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ABSTRACT 
Systems of components with increasing failure rates are considered. Switching from an oper-
ating component on standby can be performed at each instant of time. Optimal switching 
strategies, maximizing the time to the first failure of a component and to the total failure of a 
system are investigated. A new type of a strategy: the limit strategy is introduced. It is proved 
that this strategy is optimal, when there is no additional information on the state of the system. 
Some simple examples are considered. 
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1.  INTRODUCTION: TWO COMPONENTS  
Consider a system of two identical components. Assume that the distribution function (DF) of 

a component time to failure )(tF  is absolutely continuous and the corresponding failure rate 

)(tλ  is increasing. Thus, ∈)(tF IFR (increasing failure rate) [1]. The system is non-

repairable. The first component starts operating at 0=t , while the second one is switched off 

(“cold” standby). After a failure of the first component, the second starts operating immedi-

ately. The foregoing defines a usual strategy of switching upon failure. 

 

Assume now that switching from the operating component to the standby can be performed 

instantaneously at any moment of time. The former operating component then starts to be the 

standby and vice versa, thus defining a preventive switching strategy. As will be shown, this 

strategy can be very effective in various situations when we want to decrease the probability 

of a “forced” switching upon a component’s failure. A practical example is of a system with 

an “unreliable” switching device. If, in this case, a failure of a component occurs and the 
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switching device is in the failed state, then a failure of the whole system occurs. Preventive 

switching can decrease the probability of this event.  

 

Therefore it is worth finding a switching strategy that, under given assumptions, maximizes 

the probability of the system’s performance without any failure of components in a given time 

interval. Of course, a strategy of this kind cannot change the probability of system’s failure 

(when both components are failed), but extending the operation period without failures of 

components can in itself be very important in various applications. 

 

Denote by ),(1 tSP  the probability of system’s performance without any failure of compo-

nents in ],0( t  under an arbitrary switching strategy .S  Let ),(1 taP denote this probability 

with only one switch taking place at at =′ . Then it is easy to prove that 
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This simply follows from the fact that, assuming only one switch at ],0( ta ∈ : 
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In order to maximise this probability, we need  
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After differentiating the sum of integrals in (2) and equating the result to zero, we arrive at 

)()( ata −= λλ .                                          (3) 

Equation (3) has a trivial unique solution for increasing functions, namely: 2ta = . Due to 

the additivity of the integral an additional switching cannot improve this result: the total func-

tioning time of each component should be scheduled as 2t . 

 

Denote by lS , where “ l ”  stands for “ limit” , the following strategy. Let the first component 

function in ],0( t∆ , then the second component in ]2,( tt ∆∆ , then again the first component 

in ]3,2( tt ∆∆  etc. The last step in constructing this strategy is to perform the limit transition as 

0→∆t . Denote by )(,)( tFt tt ∆∆λ  and )(),( tFt llλ  the corresponding failure rate and the DF 
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of the time to the first failure of a component for the case of finite t∆  and for 0→∆t , re-

spectively. The failure rate )(tt∆λ has ordinary points of discontinuity at ,...5,3, ttt ∆∆∆  .The 

failure rate )(tlλ  has an infinite (countable) number of ordinary points of discontinuity and it 

is integrable (with respect to Lebesgue measure). Thus, )(tFl is well defined. Consider the 

following piecewise constant function, which constitutes an upper bound for )(tt∆λ : 
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while the lower bound is: 
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This means that 
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and the same inequalities are valid for the limit case when .0→∆t  Moreover, it can easily be 

seen from definitions (4) and (5) that as 0→∆t  
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uniformly in each bounded interval. Finally 
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which leads to the anticipated weak convergence result: 
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Actually, relation (7) defines a simple scale transformation of )(tF  with a scaling factor 

2/1 , and the foregoing mathematical proof is a justification of this intuitively clear statement.  
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Hence, by means of lS  an “ integrated”  system of two components had been constructed. It is 

obvious that  
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because the total scheduled time of each component’ s operation for both strategies is equal to 

.2t  What is the reason for considering the limit strategy instead of the simplest with one 

switching? It can be easily shown that we must use lS  for maximizing the mean time to the 

first failure, )(1 ST , and this can be very important in various applications. Indeed, 
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as lS  maximizes )(1 uP  for each ),0( ∞∈u . Hence, time to the first failure is stochastically 

larger [4,5] under the optimal strategy then under any other.  

 

Another situation when only lS  is optimal in the above sense is when the operation of our 

system of two components can be terminated by some external random event. It may be some 

device in series with the system, for instance. It is clear that lS  maximizes the probability of 

system’ s performance without failures of components (and the time to the first failure as well) 

in the presence of this random termination.  

The strategy lS  is, of course, a mathematical idealization. It is obvious that in practice 

t∆ cannot be very small because each preventive switching requires some effort. The switch-

ing device can also be unreliable, but, unlike the switching upon failure, the state of this de-

vice can be checked prior to the preventive switching. Thus, a practical realization of lS  can 

be formulated in the following way: perform switchings as often as reasonable. Given the cor-

responding costs and rewards, the problem of obtaining some optimal opt∆  can be consid-

ered, but this is a topic for future study. 

 

2. SOME GENERALISATIONS  

In the same manner a system of n  identical components (one operating and 1−n  standby) 

can be analyzed. The strategy that maximizes the time to the first failure is that when n -1 

equidistant switchings are scheduled. Then, using the same approach, ),,( 12 ttSP , the prob-

ability of a system of 1−n  components performing without failures in ],( 1 tt , where 1t  is the 
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time of the first failure, can be maximized etc. This results in the optimal strategy S  at each 

step that can easily be derived. The corresponding l - strategy is obviously characterized by 

the following sequence of DFs of times between consecutive failures of system’ s components: 
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where ,..., 21 tt are the times of the  first failure of a component, the second failure of a compo-

nent,… respectively. Relations (10) follow from the fact that ntt 11 −  is “ the recalculated 

starting age”  of the integrated system immediately after the first failure, 

)1()(2 1212 −−−− nttntt  is “ the recalculated starting age”  of the integrated system imme-

diately after the second failure of a component etc (we are excluding the operating times of 

the failed components). Eventually the concept close to that of minimal repair is reached [2]. 

It should be noted that this procedure is optimal in the above sense only up to and including 

the 1−n th failure. In other words: the optimal strategy increases the times to the first, sec-

ond,… 1−n th component failures by decreasing the time between the 1−n th and the last 

component failure. 

 

2.1 Consider now the following system of three identical non-repairable components with 

increasing failure rates. Two components in series start functioning at 0=t , while the third 

one is in the “ cold”  standby state. After the failure of an operating component, the standby 

starts operating immediately. The switching from any operating component to the standby can 

be performed instantaneously at any moment in time. The problem is to find the switching 

strategy that, under given assumptions, maximizes the probability of the system performing 

without failure in a given time interval. It is important to note that, in contrast to the setting of 

Section 1, we are now looking at the total failure of the system: while the last two components 

are operating (there is no remaining standby component), one of them fails. The strategy, 

which maximizes ),( tSP , the probability of the system performing without failure in ],0( t , 

is of interest. But first, as previously, we shall analyze ),(1 tSP , the probability of the system 

performing without failure of components in ],0( t  under an arbitrary switching strategy .S  
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     Let each component operate in ],0( t  during intervals of length 21 , aa  and 

213 2 aata −−= , respectively. Consider 
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and finally to the simultaneous equations 
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This system has an obvious unique solution (since )(tλ  is increasing): 

3
2

321

t
aaa === .                                            (12) 

The corresponding lS  for this case is defined in the following way. Let the first and the sec-

ond components function in ],0( t∆ , then the second and third components in ]2,( tt ∆∆ , then 

the first and third components in ]3,2( tt ∆∆  and so on. The last step in constructing this strat-

egy is to perform the limit transition as 0→∆t . It is clear that similarly to (9): 
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Thus the −l strategy is trivially optimal for achieving ),(max 1 tSPS  and is unique for obtain-

ing ).(max 1 STS  

 

Assume now that the failure, say of the third component, occurred in ],( dxxx +  under some 

arbitrary strategy and that the total functioning time of this component before the failure: 

txaaxa <<−−= 0;2 213  is fixed for this realization. Values of 21 ,aa  denote the total 

functioning time of the first and the second components, respectively, in ],0( x . This means 

that θ≡+ 21 aa  is fixed. We want to find the conditional strategy, which maximizes the 

probability of the system functioning without failure in ],0( t , given 3a . It is clear that: 
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Thus, as in (3): 
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and finally: 
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This result is intuitively obvious, because, given 3a , we can only define an optimal strategy 

for the first and second components in ],0( x , which leads to (14). In reality, x  (or 3a ) is ran-

dom and as a result only the −l strategy is optimal for the two components over all realiza-

tions. What is more, we have arbitrarily assumed that the third component failed first, but it 

could have been any of them. Hence, for the three components starting at 0=t  and operating 

up to the first component failure, only lS  can “ service”  all situations, being the unique opti-

mal strategy for the case under consideration. It is worthwhile mentioning that, as a result of 

(12), lS is trivially optimal for realizations, which have no component failures in ],0( t .  

 

Actually, this strategy performs the following operation with our system of increasing failure 

rate components: At every instant in time it asymptotically ( 0→∆t ) tends to “ place”  the 

best components in the operational state, while after the system’ s failure the remaining non-

failed component is more “ worn-out”  under this strategy than under any other. The best com-

ponent is defined as the one having the minimum current failure rate. Thus the principle “ the 

best component should function first”  is realized. We shall come back to discussing this 

principle while considering some examples. 

 

The above approach can easily be generalized to a system of k identical components (with 

increasing failure rates) in series, which starts operating, and has n  standby components. The 

corresponding −l strategy before the first failure is defined by 
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of the “ integrated component” , and then relations similar to (10) can be used. This strategy is 
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optimal, maximizing the probability of failure-free performance of the system in a given in-

terval of time as well as the mean time to failure.  

 

 

3. EXAMPLES 

3.1 Consider first, as in Section 1, a system of two identical components (main and 

standby) with exponential DF: 

{ }ttFg λ−−= exp1)( .                                        (15). 

Assume that each component of this system can be instantly repaired upon failure, but the 

number of repairs is bounded by 0≥m . A situation of this kind often happens in practice. 

The “ total failure”  of each component occurs when m  repairs have already been performed 

and the component fails again. Thus, the notions of “ failure”  and “ total failure”  differ. The DF 

of time to total failure follows the Erlangian pattern: 
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 with increasing failure rate [3]: 
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What strategy should be used to maximize the probability of the system functioning without 

total failure of any component in the given interval of time ],0( t ? In Section 1 this probabil-

ity was denoted by ).,(1 tSP  A formal answer, based on the previous results, is that switching 

only at a t= / 2  (and using the lS  strategy for maximizing 1T ) should be used for this pur-

pose. Previously the distribution )(tF  was a so-called “ black box”  DF [2] while now (16) has 

a concrete form. But the main fact is that now we are able to perform the dynamic strategy of 

switching, based on the information at hand. This information is just the number of repairs 

left for each component at any instant of time. From a simple probabilistic reasoning it fol-

lows that an optimal strategy would be any strategy optS  that leaves the remaining component 

in the state with no repairs left after the total failure of the other component. Indeed, it was 

stated earlier that for this case the switching could not change the probability of the system 

performing without failure in ],0( t   (the failure of the system is defined as the total failure of 
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both components). In other words: the total number of cycles till the system’ s failure is 

22 +m  where each cycle has DF (15).  Thus, for any optimal strategy of the described type: 

=),(1 tSP opt { }∑
+

−
12

0 !
)(

exp
m i

i
t

t
λλ                                   (17) 

and for any other, including  the one with switching at 2ta =  and lS : 
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where 12 +< mk  ( k in (18) can be random, in which case ),(1 tsP  should be understood as 

the mathematical expectation of the right hand side). 

From (17) and (18): 

),(),( 11 tSPtSP opt > . 

This inequality holds for ),0( ∞∈∀t  which is to say that the time to the first failure is sto-

chastically larger (see later) under optS  than under the other strategy. Hence, the optimal black 

box strategy with switching at 2ta =  (and lS ) is worse than the dynamic optimal strategy 

based on information. The simplest optS  for the case under consideration is the following 

strategy: the first component starts operating and is replaced by the standby only after the 

m th failure (it is instantly repaired and there are no more repairs left). The former standby 

operates till its total failure. It is clear that this strategy maximizes 1T  as well. 

 

3.2 Consider now the system of three identical components described in Section 2, each 

component satisfying assumptions (15) and (16), two of which are in series and one on 

standby. We are looking at the total failure of the system: this occurs when two components 

are operating (there is no remaining standby component) and one of them fails and has no 

more repairs left. It was proved that the lS  strategy of Section 2 is an optimal black box strat-

egy for this case as well (since )(tλ  is increasing). We shall define an optimal information 

based strategy of switching for the described system. It is clear that the goal of this strategy is 

to decrease r , the random number of repairs left ( )0 mr ≤≤ for the remaining component 

after the system has failed. Because the total number of possible of repairs is fixed ( m3 ), the 

random number of cycles n  (a cycle is defined as the period between successive failures gov-

erned by an exponential DF with failure rate λ2 ) will be maximal in some sense and this will 

lead to the desired result. Indeed, it is clear that mrn 31 =+− . Denote by or and ar  the 
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number of repairs left for the remaining component under the optimal (to be defined) strategy 

and under some arbitrary strategy, respectively. Define an optimal strategy optS  as the strat-

egy in accordance with which the best component should function first. The best component 

is defined as the one having the most repairs left. Thus under the optimal strategy, each time a 

failure of the component occurs, it is replaced by the standby, if its remaining number of re-

pairs is more than the number that remains after the failure (and instantaneous repair) of the 

operating component. It is clear that this strategy achieves the following inequality: 

ao rr ≤ ,                                                       (19) 

which should be understood [4,5] in terms of stochastic ordering (stochastically smaller) i.e: 

)(1)(1 xGxG ao −≤− ;  mx ≤≤0 ,                           (20) 

where )(xGo  and )(xGa  are the discrete DFs of or  and ar  respectively. 

     Thus, it follows from above, using the same notation, that: 

ao nn ≥  

and, eventually 

),(),( tSPtSP opt ≥ . 

As previously, inequality (20), means that the expected time to failure of the system under 

optS  is larger (not smaller) than under the other strategy. Hence, an optimal information based 

strategy is better than the formal optimal black box strategy Sl , defined in Section 2. 

 

3.3 What is the possible interpretation of the lS  black box principle (the components with 

lower failure rates should function first) in the situation with information at hand? We shall 

illustrate this using the simple example given in Section 3.1. There should be no switching at 

all before the first failure of the operating component, because, due to the exponential DF 

(15), the components are statistically identical at any instant of time prior to the first failure.  

 

Let equation 
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define the conditional failure rate )(tjλ : the failure rate of the component having 

j ; mj ≤≤0  repairs left. It can easily be seen that for any ),0( ∞∈t  and 21 jj < : 
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Inequality (22) follows from the integral representation of the failure rate for the Gamma (Er-

langian) DF [3]: 
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Hence, after the first failure we replace the failed component by the standby one, which due to 

(22), will have a smaller conditional failure rate than the failed component; after its first fail-

ure both components will have equal conditional failure rates, etc. It is clear that this strategy 

is optimal in the sense of equation (17). Actually, it can be defined as the rule: “ the best 

should function first” , which was described in Section 3.2. The point is that lS  implements 

this principle statistically, without additional information (and that is why it is only subopti-

mal), while the optimal dynamic strategy is information based. The heuristic considerations, 

presented in Sections 3.2 and 3.3, are intuitively evident (including inequality (19)), but need 

further mathematical justification in the future. 
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