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ABSTRACT 
In the industrial community it is well known that the failure rate of the manufactured units 
vary with time due to a variety of causes, namely, engineering design, manufacturing process, 
maintenance and quality inspection procedures and various assignable and non-assignable 
factors. Such failure rates invariably exhibit changes in both level and slope and at times 
exhibit periodic patterns as well. Therefore it would be quite inappropriate and erroneous to 
analyze such stochastic series of observations using the usual failure distribution approach. 
Since such data can be construed as time series, we suggest in this paper the time series 
techniques including the Kalman filter for their analysis. Other advantages of using the latter 
techniques are that the periodicities, if any, can be taken into account and short-term forecasts 
can be made which otherwise would not have been possible. 
 
Keywords: Series and/or parallel configurations; standby; convolution; ARIMA process; 
aggregate and product of ARIMA process; ACF and PACF; MSE; Kalman filter; Boolean 
function; failure rate; MTTF and MTBF. 
 
 
1. INTRODUCTION 

In the present age of fast-moving technological development all industries, institutions and 

organizations use highly complex systems and it is natural for them to expect efficiency, 

quality and reliability of these systems. However, in practice systems do breakdown earlier 

than expected, sometimes complete failure occurs. The usual measures of breakdowns are the 
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time-to-failure, the failure rates and the time-between-failures, for the assessment of the 

quality and reliability of systems. The data are collected and analyzed using the techniques of 

mathematical reliability theory developed over the last few decades. The majority of these 

techniques have been developed on the assumption that the failure data arise from certain 

probability distributions such as the exponential, Weibull, normal and log normal and gamma 

failure laws. 

The most popular of these laws is the exponential failure law mainly for the following 

reasons: 

1) It does represent some failure data. 

2) It has only one parameter and the failure rate is constant. 

3) Under the assumption of this failure law, the results can be derived easily and in closed 

form. 

4) The other important factor is that the maximum likelihood estimate of the parameter is 

associated with the chi-square distribution and this facilitates the testing of hypotheses. 

 

In the case of other failure laws, the results are not available in closed form and are not easily 

tractable. Their hazard functions or failure rates could be increasing or decreasing, depending 

upon the values of their parameters and that is one of the reasons they fit most of the real life 

data. Sometimes two or more of these distributions fit very well to the same data, making it 

difficult which one to choose. 

 

Most of the researchers in reliability theory often consider complex configurations and derive 

difficult analytical expressions, but because of the above difficulties they end up using the 

constant failure rate (CFR) of the exponential law which considerably simplifies the final 

result, without worrying about whether other distributions might fit their data better 

(Yadavalli and Hines [17]). 

 

As mentioned in the abstract, due to the complex nature of operations, maintenance and 

inspection procedures and various other assignable and unassignable causes, the failure rates 

are not only time-dependent but often subject to random fluctuation. In such cases the 

traditional failure distribution approach will be not only inappropriate but would be 

misleading and erroneous. For this reason the authors suggest in this paper a non-traditional 

approach based on time series techniques and the Kalman filter.       
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The plan of the paper is as follows: Some acronyms and notation are given in Section 2.  

More complex reliability systems are discussed in Section 3. Section 4 briefly reviews the 

ARIMA models with a few theorems for later use. The series given in Table 4.1 are analyzed 

and the time series models are fitted with a few forecasts in each case in Section 4.  The 

Kalman filter approach and a numerical example are discussed in Section 5. Thereafter a list 

of references is provided. 

 

2. DEFINITIONS AND NOTATION 

Acronyms 

ACF autocorrelation function 

AR autoregressive 

ARMA autoregressive moving average 

ARIMA autoregressive integrated moving average 

CFR constant failure rate 

DFR decreasing failure rate 

IFR increasing failure rate 

KF Kalman filter 

MA moving average 

MLE maximum likelihood estimator 

MSE mean square error 

MTTF mean-time-to-failure 

MTBF mean-time-between-failures 

PACF Partial autocorrelation function 

TS time series 

 

Notation 

B−=∇ 1  the inverted delta and B is the backshift operator   

d an integer number 0, 1, 2, .....   

T continuous failure time variate   

t failure time   

)(tf  pdf - probability density function of T 

)(tF  cumulative distribution function of T 

)(1)( tFtR −=  reliability function or survivor function   
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)(/)()( tRtfth =  hazard function or instantaneous failure rate (or simply failure rate)   

)(tH  cumulative hazard function   

}{ it  ordered (low to high) sequence of failure times i =1, 2, ..., n   

}{ jτ  a sequence of equidistant points   j =1, 2, ..., r 

                         )(ˆ th 0,
)( after time survivors ofNumber 

],[ intervalin  failures ofNumber 
>

−×
=

+

+ s
t tst

stt

ττ
ττ

 

                         
0at  test put to units ofnumber  Total

point   the toup surviving units ofNumber 
)(ˆ

=
=

t
t

tR  

d difference operator   

ijδ  Kronecker delta function   

AR(p) AR process of order p, p =1, 2, ...    

MA(q) MA process of order q, q =1, 2, ...    

ARMA(p,q) ARMA process of orders p,q,  p,q =1, 2, ... 

ARIMA(p,d,q) ARIMA process of orders p,d,q, p,d,q =1, 2, … 

 

3. RELIABILITY FUNCTIONS FOR COMPLEX SYSTEMS 

On scanning the literature on reliability (Barlow [1] and Gnedenko et  al [5]), one would find 

that the main characteristics such as reliability availability, MTTF etc. have been obtained for 

complex systems.  Main algebraic vehicles to arrive at the desired results have been the 

development of the difference-differential equations under certain assumptions. Solutions of 

these equations have been obtained using the Laplace transforms. In some cases Boolean 

functions (or structure functions) and the software reliability models and convolutions have 

been used. The steady state solutions have been obtained making ∞→t . Assuming CFR, 

results have been obtained in simple and closed form. Two examples are given below for 

information. 

 

Example 3.1  A parallel system  

Yadavalli and Hines [17] considered two parallel systems each consisting of a generator. Let 

us denote them by 1G and 2G . 1G  is connected to a main switchboard MSB 1  which in turn is 

connected to m auxiliary switchboards ASB i1  ),...,1( mi = . Similarly 2G  is connected to a 

main switchboard MSB 2  which in turn is connected to n auxiliary switchboards 
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ASB i2 ),...,1( ni = . (See Figure 3.1). The corresponding reliabilities are defined in the same 

box. 

 

Figure 3.1 

 

Using the Boolean function technique, the authors have obtained the reliability SR  of the 

whole system for the following three cases (i) 1== mn  (ii) mn =  and (iii) mnmn ≠> ,1, . 

For the simplest case i.e. 1== mn , the reliability of the whole system is 

654321654321 RRRRRRRRRRRRRS −+=                                                                              (3.1) 

at time point t (t is deleted for brevity and typographical convenience). 

 

Example 3.2   (N-version programming in software)  

Hishitani et al [7] have discussed the problem of reliability assessment for a software system. 

Multiversion programming in software reliability is equivalent to hardware redundancy in 

system reliability. In other words the N-version programming is a realization of the parallel 

configuration of software. Considering a 3-version program system, the authors defined 

(i) 2 out of 3 versions are required for the software system to function properly. 

(ii) )(tFi  = the probability that the version i will cause failure of the system in the interval 

(0,t], i =1, 2, 3. 

G 1        R 1

M S B 1       R 2

A S B 11
R 3

A S B 12
R 3

A SB 1m
R 3

G2        R 4

M S B 2       R 5

A S B 21
R 6

A S B 22
R 6

A S B 2n
R 6

L oa d
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(iii) )(tRi  = the probability that the version I functions properly in the interval (0,t] without 

causing a failure of the system. 

The reliability of the system is then given by 

321321321321 RRRRRFRFRFRRRS +++=                               

      321133221 2 RRRRRRRRR −++=                   (3.2) 

Assuming that the failure times for the i-th version are negative exponential with parameters 

,iλ i =1, 2, 3 they obtained the system reliability  

])([exp2])([exp])([exp])([exp)( 321133221 tttttRi λλλλλλλλλ ++−−+−++−++−=      (3.3) 

and 

MTTF 1
321

1
31

1
32

1
21 )(2)()()( −−−− ++−+++++= λλλλλλλλλ .                                     (3.4) 

Similar to Examples 3.1 and 3.2 there exists a vast amount of material in the literature on 

Reliability Theory. The purpose of discussing these examples is to understand that 

(a) if the assumption of CFR is correct and confirmed by the estimation of parameters and the 

testing of hypotheses such as the goodness-of-fit test, one can proceed to analyze the data at 

hand. 

(b) if the hypothesis about CFR is rejected, one will have to look for another failure law such 

as the Weibull, lognormal, normal or gamma etc. But the choice of any of these is again 

fraught with difficulties since 

(i) they involve more than one parameter (see Lawless [10], Nelson [11]). 

(ii) the estimation of parameters and the testing of hypotheses may be tedious and 

involve iteration procedures. 

(iii) they have increasing and decreasing failure rates depending on the values of 

parameters. 

(iv) it may be difficult at times to distinguish between any two or more of them since 

they all might appear to fit the data equally well. 

(v) the final results may be complicated due to interactions. 

 

For these difficulties we suggest in this paper to resort to the time series techniques including 

the KF. In the following section we give a review of ARMA models as well as examples 

involving failure rates and the sums and products of two failure rates. 
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4. A SHORT REVIEW OF ARIMA MODELS  

Let ,...2,1,0},{ ±±=tZ t  denote a time series made up of, say, observed values of failure 

rates of certain units. A TS model which has achieved a commendable success in applications 

to many frequently occurring nonstationary (stationary) time series is the ARIMA ),,( qdp  

model due to Box et al [2], defined by 

tt
d eBZB )()( θ=∇Φ                     (4.1) 

where BB,1−=∇ is the backshift operator left ∑
=

− Φ−=Φ=
p

j

j
jjtt

j BBXXB
1

1)(),(  and  

∑
=

−=
q

j

j
j BB

1

1)( θθ  are AR and MA operators respectively. }{ te  is the white-noise process 

such that 2),cov(  and0)( etsstt eeteE σδ=∀= . 

Let ,t
d

t ZW ∇=  then model (4.1) reduces to  

tt eBWB )()( θ=Φ                     (4.2) 

which is called ARMA ),( qp model. Notice that }{ tZ represents a nonstationary time series 

whereas }{ tW represents a stationary time series. Further for the process (4.2) to be the 

stationary and invertible, the conditions are embodied in the statement that the roots of the 

polynomials )(BΦ  and )(Bθ  are greater than unity in modulus. 

An example of real life failure rates subjected to random fluctuations are given below for 

perusal. 

 

Example 4.1  Proschan [12] considered the pooled data on times of successive failures of the 

air-conditioning system of a fleet of jet airplanes. The failure rates (F.R.) (in %) are displayed 

in Table 4.1. 

Table 4.1 Failure rates (F.R.) Air-conditioning systems of a fleet of jet airplanes. 

S. No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

F.R. 9 16 12 9 12 13 11 11 10 11 9 10 4 4 5 

                
S.No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

F.R. 5 5 3 14 9 14 7 13 5 10 6 8 7 6 7 

 

First we analyze the data given in Table 4.1. The ACF and PACF of }{ tZ are given in Figure 

4.1. 
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Figure 4.1 Correlogram (Table 4.1) 

 

From the ACF and PACF in Figure 4.1, it turns out that an AR(2) model defined by 

tttt eZZcZ +++= −− 2211 φφ                    (4.3) 

can be fitted to the series }{ tZ , where  c = 3.257307, 1φ = 0.12659  and 2φ = 0.50824. 

The l-step ahead, l =1, 2, 3, ... forecast models are given by; 

1,)1(ˆ
121 =++= − lcZZZ ttt φφ  

2,)1(ˆ)2(ˆ
21 =++= lcZZZ ttt φφ                   (4.4) 

3,)2(ˆ)1(ˆ)(ˆ
21 ≥+−+−= lclZlZlZ ttt φφ  

Using (4.4) the forecast values of the failure rates corresponding to  

3130292827    and,,, ZZZZZ   are obtained as  

)1(2̂6Z = 9.0992,  )2(2̂6Z  = 7.4586,  )3(2̂6Z  = 8.8260; )4(2̂6Z  = 8.1653 and )5(2̂6Z  = 8.7766  

which are compatible with the observed values. 

 

4.1 Sums and products of ARMA models 

In practice an ARMA model is more difficult to fit to a dataset than to any of its components, 

namely, AR or MA; although in certain aspects an ARMA model may be more efficient. 

Furthermore if one fits both an AR(p) (or MA(q) ) and an ARMA( ), 00 qp  to the same data, 

one may find that the latter fits better with fewer parameters i.e. )or (00 qpqp <+ . On the 

other hand, while the mixed model ARMA may involve the estimation of fewer parameters, 

the fitted model may be more difficult to comprehend, interpret and explain the hidden 

characteristics of the data. The following three theorems are important in the context of 

reliability: 

 

 
Autocorrelation 

 
Partial Correlation 

  
AC 

 
 PAC 

     

     .  |**.    |      .  |**.    | 1 0.263 0.263 
     .  |****   |      .  |***    | 2 0.482 0.443 
     .  |  .    |      .**|  .    | 3 0.045 -0.189 
     .  |**.    |      .  |* .    | 4 0.252 0.089 
     . *|  .    |      .**|  .    | 5 -0.181 -0.259 
     . *|  .    |      .**|  .    | 6 -0.140 -0.280 
     .**|  .    |      .  |* .    | 7 -0.235 0.082 
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Theorem 4.1  (Granger and Morris [6], Singh [13]) 

Let )(...,),(...,),(),( 21 tXtXtXtX ki  be k independent and stationary time series such that 

)(tX i ~ ARMA ,...,,1),,( kiqp ii =  then 

∑
=

k

i
i tX

1

)( ~ ARMA ),( qp                    (4.5) 

where )...,,1,(max,
1

kjqppqpp
k

i
jji =+−≤≤ ∑

=

. 

Theorem 4.2  (Engel [4], Singh [13])  

Let kitX i ...,,1),( =  be k independent and stationary time series such that 

)(tX i ~ARMA ),( ii qp  then 

)(
1

tX i

k

i
Π

=
~ARMA ),( qp                    (4.6) 

where )...,,1,(max,
1

kipqpqpp iii

k

i

=−+≤≤ Π
=

 

In particular, 

AR )( 1p AR )( 2p  =ARMA 21212121 )),,(min,( pppppppp ≠−  

AR )( p AR )( p  = ARMA 21
22 ),,( ppppp =−  

ARMA ),( 11 qp MA )( 2q = MA )( 2q , where 211 qpq ≤−  

Note that the orders on the left-hand side are upper bounds. 

Theorem 4.3  (Singh and Nirmalan [16]) 

Let kttX i ...,,1),( =  be k independent and stationary time series such that 

)(tX i ~ARMA kiqp ii ...,,1),,( =  then 







 += ∑ Π

= =

k

i
i

k

i
i tXtXtW

1 1

)()()( ~ ARMA ),( 00 qp      (4.7) 

where i

k

i

k

i
i ppp Π∑

==

+≤
11

0  and }...,,1),{(max00 kipqpq ii =−+≤ . 

Example 4.2  Sums and Products of Failure Rates 

We examined the failure rates of two types of V805 vacuum tubes used in transmitters (see 

Davis [3]) which are tabulated below along with their sums and products. 
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Table 4.2  Sums and Products of Two Failure Rates in % 

S No 1 2 3 4 5 6 7 8 9 10 

1F  11 9 9.5 13 10.5 14 12 10.5 12 10 

2F  13 15 12.5 9.5 9.5 10.5 10 7.5 9 10.5 

100
21FF

 1.43 1.35 1.19 1.24 1.00 1.47 1.20 0.80 1.08 1.05 

21 FF +  24 24 22 22.5 20 24.5 22 18 21 20.5 

           

S No 11 12 13 14 15 16 17 18 19 20 

1F  10 8 17.5 10.5 12 18 8 16 14 12 

2F  15 10 11 9.5 16 15.5 16 17 15 11 

100
21FF

 1.50 0.80 1.93 1.06 1.92 2.79 1.28 2.72 2.10 1.32 

21 FF +  25 18 28.5 20 28 33.5 24 33 29 23 

 

The ACF and PACF of the product of the two failure rates are plotted in Figure 4.2. 

 

 

 

 

 

 

 

Figure 4.2 ACF and PACF of the product of failure rates 

 

From the Figure 4.2, we notice that the ACF and PACF of the product of the failure rates 1F  

and 2F  in Table 4.2 suggest an AR(3) model.  

The fitted model is  

tZ = 3.911955 - 0.16692 1−tZ + 0.41835 2−tZ + 0.71964 3−tZ + te .  

We may use this model for forecasting purposes. The graph in Figure 4.3 displays the actual  

product of  reliabilities and the corresponding predicted values. 

 

 
Autocorrelation 

 
Partial Correlation 

  
AC 

 
PAC 

 
     .  |* .    |      .  |* .    | 1 0.142 0.142 
     .  |***    |      .  |***    | 2 0.349 0.336 
     .  |***    |      .  |***    | 3 0.393 0.360 
     . *|  .    |      .**|  .    | 4 -0.093 -0.316 
     .  |* .    |      . *|  .    | 5 0.119 -0.157 
     . *|  .    |      . *|  .    | 6 -0.125 -0.184 
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Figure 4.3 Time plot of product of failure rates 

 

The ACF and PACF of the sum of the two failure rates are plotted in Figure 4.4 below. 

 

 

 

 

 

 

Figure 4.4 ACF and PACF of the Sum of the failure rates. 

 

The ACF and PACF from Fig 4.4 suggest that an AR(3) model can be fitted to the series.  

That is 

ttttt eZZZcZ ++++= −−− 332211 φφφ  

where c = 4.781724,  1φ = - 0.14197, 2φ = 0.41173  and  3φ = 0.53258.  

Again this model can be used for forecasting purposes. Figure 4.5 is a time plot of the sum of 

the reliabilities and the values predicted by the AR(3) model. 

 

 
Autocorrelation 

 

 
Partial Correlation 

  
AC 

 
PAC 

     .  |* .    |      .  |* .    | 1 0.146 0.146 
     .  |***    |      .  |***    | 2 0.384 0.371 
     .  |***    |      .  |**.    | 3 0.341 0.298 
     .  |  .    |      .**|  .    | 4 -0.055 -0.292 
     .  |* .    |      . *|  .    | 5 0.109 -0.154 
     . *|  .    |      . *|  .    | 6 -0.143 -0.162 
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Figure 4.5 Time plot of the sum of the reliabilities 

 

The above procedure can be extended for fitting time series models to the sums and products 

of component reliabilities finally to get time series models for assessing reliabilities of the 

systems considered by, say Yadavalli et al [17] and Hishitani et al [7] by making proper use 

of the Theorems discussed in Section 4.1.  

 

5. APPLICATION OF THE KALMAN FILTER 

The observation and state equations of recursive estimation are (see Singh [14]) 

nttetptfth ...,,3,2,1)()()()( =+=                  (5.1) 

and )()1()( tutptp +−= φ                    (5.2) 

respectively, where )(te and )(tu  are random errors with means zero and variances 2
eσ and 

2
uσ  respectively. ntth ...,,1),( =  are observed values of failure rates, )(tf is the pdf of the  

failure time of a component and  
)(

1
)(

tr
tp =   where )(tr   is the reliability of the component  

at time t.  

φ  and )(tf are assumed known whereas the )( ′tp s are unknown. 
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Like the ARIMA models, the minimum MSE estimate )|( stp  of )(tp  is the expected value 

of )(tp  given the data set )(....,),1( shh , that is, 

)}(...,),1(|)({)|( shhtpEstp =                   (5.3) 

and the variance of the estimator )|( stp is given by 

)](...,),1(|)}|()({[)|( 2 shhstptpEstc −=                  (5.4) 

For details see Kalman [8], Kalman and Bucy [9]. Depending on the span of data and the time 

point  t at which the estimate is required, there are three cases of interest, namely, 

1.  the one-step ahead predictors )1|( −= tstp are called the Kalman filter estimates. 

2.  the conditional means )|( nstp = based on the complete data span )(...,),1( nhh are 

     called the Kalman smoothed estimators. 

3.  the conditional means )|( nstp > are called the Kalman forecasts. 

The computations of quantities in (5.3) and (5.4) appear difficult, but using the recursive 

procedures developed in Kalman [8] and Kalman and Bucy [9], one would find the 

computations easier. For example, the Kalman filter estimators for )1|( −ttp and )|( ttp  

using the forward recursions are  

)1()1|1()1|( −=−−=− t ptt pttp φφ                  (5.5) 

)}1|()()(){()1|()|()( −−+−== ttptfthtgttpttptp  

           )}()(1){1|()()( tftgttpthtg −−−=                 (5.6) 

and the estimators for the variances are 
2222 )1()1|1()1|( uu tcttcttc σφσφ +−=+−−=−                 (5.7) 

)}()(1){1|()|()( tftgttcttctc −−==                               (5.8) 

where )()()1|()( 1 tVtfttctg −−=   and 22 )1|()()( uttctftV σ+−=  

Notice that the estimators )(tp and their variances )(tc can be calculated easily from (5.5) to 

(5.8).  

Example 5.1 

Given φ  = 1.0  t∀ , 2
eσ = 0.0039, 2

uσ = 0.0088, )0|0(c  = 0, )0|1(c =  2
uσ = 0.0088 and  

)0(p =1 and )0|1(p =1.0. Suppose that the failure time T is distributed as negative 

exponential with mean θ  = 50 units of time. 

 

0),02.0(exp 02.0)( ≥−= tttf                   (5.9) 
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For t = 1, 2, 3, 4 and 5, the estimates of )(tp in terms of observed failure rates along with their 

variances are given below: 

068.0)5(586.1                                                                            
)1(065.0)2(126.0)3(186.0)4(249.0)5(309.0)5((v)

049.0)4(450.1)1(050.0)2(115.0)3(170.0)4(227.0)4((iv)
033.0)3(324.1)1(054.0)2(105.0)3(156.0)3((iii)
020.0)2(207.1)1(049.0)2(094.0)2((ii)
008.0)1(088.1)1(044.0)1(i)(

=+
++++=

=++++=
=+++=
=++=
=+=

c

hhhhhp

chhhhp

chhhp

chhp

chp

 

The multivariate state-space model 

 

The multivariate counterparts of equations (5.5), (5.6), (5.7) and (5.8) are given below (see 

Singh [14], [15] for details).  

)()()()( tttt epQh +=                   (5.10) 

)()1()( ttt uSP +−=                  (5.11) 

which are observation and state equations respectively, where ( ))(...,),()( 1 ththt k=h  is a 

1×k vector of observed failure rates.  

)))((()( tqt i=Q  is a kk × diagonal matrix. )(tqi  is the pdf of the failure time of the i-th 

component. ( )T
k tptpt )(...,),()( 1=p is a 1×k  vector of kitpi ...,,1),( =  such that 

)(
1

)(
tr

tp
i

i = , where )(tri  is the reliability of the i-th component to be determined.   is a  

kk × transition matrix of constants. The covariance matrices for the measurement errors  

( )T
k tetet )(...,),()( 1=e and transition error vector ( )T

k tutut )(...,),()( 1=u are  

)}()({ ttE TeeS =  

and      )}()({ ttE TuuW =  

respectively. 

The initial state vector )0(p is assumed to be a random vector variate with mean vector  and 

covariance matrix { }∑ −−= TE ))0()()0(( pp  

The Kalman filter estimators for )1|( −ttp  and )|( ttp  are  

)1|1()1|( −−=− tttt Sp  

and nttttttttttt ...,,1)}1|()()(){()1|()|()( =−−+−== pQhGppp  

with p =)0|0(  where )(tG  is a kk × matrix called the gain 

or weight matrix defined by 
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1})()1|()(){()1|()( −+−−= SQcQQcG tttttttt TT  

The conditional mean-squared covariance matrices for estimators )1|( −ttp and )|( ttp  are 

WFc +−−=− Ttttt )1|1()1|(  

and   )1|()()()1|()|()( −−−== ttttttttt cQGccc . 

If one is interested in estimating a vector of reliabilities, follow the procedure outlined above. 
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