
33

ORiON, Vol. 19, No. 1/2, pp 33-52 ISSN 0259-191-X

A PARTITIONING SCHEME FOR SOLVING

THE 0-1 KNAPSACK PROBLEM

M.F. KRUGER and J.M. HATTINGH
School of Computer, Statistical and Mathematical Sciences

North-West University (Potchefstroom Campus)

Private Bag X6001, Potchefstroom, 2520, South Africa

E-mail: bwimfk@puknet.puk.ac.za, rkwjmh@puknet.puk.ac.za

ABSTRACT

The application of valid inequalities to provide relaxations which can produce tight bounds, is

now common practice in Combinatorial Optimisation. This paper attempts to complement

current theoretical investigations in this regard. We experimentally search for "valid"

equalities which have the potential of strengthening the problem's formulation.

Recently, Martello and Toth [13] included cardinality constraints to derive tight upper bounds

for the 0-1 Knapsack Problem. Encouraged by their results, we partition the search space by

using equality cardinality constraints. Instead of solving the original problem, an equivalent

problem, which consists of one or more 0-1 Knapsack Problem with an exact cardinality

bound, is solved.

By explicitly including a bound on the cardinality, one is able to reduce the size of each

subproblem and compute tight upper bounds. Good feasible solutions found along the way are

employed to reduce the computational effort by reducing the number of trees searched and the

size of the subsequent search trees.

We give a brief description of two Lagrangian-based Branch-and-Bound algorithms proposed

in Kruger [9] for solving the exact cardinality bounded subproblems and report on results of

numerical experiments with a sequential implementation. Implications for and strategies

towards parallel implementation are also given.

Keywords: Search Algorithms, Combinatorial Optimisation, Mathematical Programming.

1. INTRODUCTION AND MOTIVATION

Let n items with weights a1, a2, ..., an, and c1, c2, ..., cn be given. The Knapsack Problem is to

pack a given knapsack with capacity b so as to maximize the total profit. The 0-1 Knapsack

Problem may thus be formulated as

34

1 1

max , 0,1 for 1, 2, , ,
n n

IP j j j j j

j j

z c x a x b x j n (1)

where all data are integers, and xj = 1 if item j is included in the knapsack and 0 otherwise.

Without loss in generality we may assume that the aj > 0, cj > 0, aj b, for j = 1, 2, ..., n and

1
.

n

jj
a b

An upper bound z , for IPz , can be produced by relaxing the integrality constraints on the

variables xj and solving the Linear Programming relaxation problem and setting LPz z ,

where z is the largest integer z. If the weights and profits are sorted according to non-

increasing profit density, i.e.

1

1

, for 1, 2, , 1,
j j

j j

c c
j n

a a
 (2)

and

1

1 1

,
t t

j j

j j

a b a (3)

then the LP solution is given by Dantzig [4]

1

1

1, for 1, 2, , 1

0, for 1, , , and

,

j

j

t

t j tj

x j t

x j t n

x b a a

while

1 1

1 1

.
t t

t
LP j j

j jt

c
z c b a

a
 (4)

We will call the above LP-solution with xt set to 0, the break solution and t the break item.

The bound z is called the Dantzig-bound. If the items are already sorted the computation of

LPz is done in O(n) time.

1.1 Historical Notes on Exact Algorithms

The 0-1 Knapsack Problem has received considerable attention, not only because it has

several important applications in itself, but also as a substructure in many discrete

35

optimisation problems. The techniques for exactly solving the 0-1 Knapsack Problem can be

classified into three groups: Dynamic Programming based algorithms, Branch-and-Bound

based algorithms, and hybrid approaches.

Early papers which specialized Dynamic Programming for the 0-1 Knapsack Problem include

Bellman [2], Dantzig [4] and Bellman and Dreyfus [3]. The idea is to first fill a small

knapsack optimally and then, using this information, fill larger a knapsack optimally. This

process is repeated until the original problem is solved completely. Some computational

improvements were proposed by Toth in [17].

In his award winning PhD-thesis Pisinger [16, Chapter 4] devised a dynamic programming

recursion, which, although the worst-case time complexity is still O(bn) as for the Bellman

recursion, solves most relatively large problem instances without enumerating too many

variables. The algorithm starts from the break solution and at each stage either inserts or

removes an item. Strong upper bounds are used to limit the number states in the recursion.

The enumeration process terminates due to some bounding tests, in which case it is possible

to prove that the current incumbent solution is optimal.

Recently, Martello, Pisinger and Toth [10] incorporated cardinality constraints into a very

efficient Dynamic Programming algorithm. Although the worst-case time complexity of their

algorithm is still O(bn), they solved most instances quite quickly due to the tight bounds

produced by the cardinality constraints.

One of the first Branch-and-Bound algorithms for the 0-1 Knapsack Problem was proposed

by Kolesar [8]. It was a straightforward specialization of the Land and Doig algorithm for

general integer programming problems. The algorithm used the best bound selection rule and

branching was done on the fractional variable. The large computer memory requirements of

this algorithm led to the development of other Branch-and-Bound algorithms by Horowitz and

Sahni [7], Nauss [14], Fayard and Plateau [6] and Martello and Toth [11], to name but a few.

These algorithms use a depth-first selection rule and branching is done on the free variable

with the smallest index (assuming that the items are sorted according to non-increasing profit

densities). The depth-first enumeration limits the space consumption of these algorithms.

Many of these algorithms include a reduction or preprocessing phase in which some of the

extremal variables are fixed to 0 or 1.

36

The performance of a Branch-and-Bound algorithm very much depends on the tightness and

application of upper bounds. Several bounds were proposed in the literature of which Martello

and Toth [11, 12, 13] were some of the main contributors. Bounds are generally based on

Lagrangian relaxation, partial enumeration, the adding of valid inequalities, and relaxations of

these valid inequalities.

Martello and Toth [11] compared some of these algorithms. Their results showed that "easy"

problem instances can be solved efficiently.

Hybrid approaches to the solving of the 0-1 Knapsack Problem are mainly devised by

combining Branch-and-Bound with Dynamic Programming. One approach is to do a Branch-

and-Bound search up to a certain time limit and thereafter automatically switch over to

Dynamic Programming (see Dudzi ski and Walukiewicz [5]). An approach recently proposed

by Martello and Toth [13] , is to do a Branch-and-Bound search down to a certain level in the

search tree or while the residual capacity is above a certain threshold value. Dynamic

Programming is then used to solve the subproblem to optimality.

1.2 Aspects of Search Models

In order to avoid enumerating all feasible solutions a good search strategy and a bounding

procedure are crucial. Bounding procedures are usually based on the exact solution of a

relaxed problem which is obtained from the original problem by relaxing or dropping some of

the constraints. The application of valid inequalities to provide relaxations which can produce

tight bounds, is now common practice. With this approach one tries to find a polyhedral

description of the convex hull of the feasible points. This paper attempts to complement

current theoretical investigations in this regard. We experimentally search for "valid"

equalities which have the potential of strengthening the problem's formulation. The inclusion

of these equalities in the problem formulation partitions the search space.

If one partitions the search space before it is searched and concentrate the search only on

those parts that have the potential of delivering feasible solutions better than the current best,

one has more than one search tree. The best solution found amongst these trees (forest search)

is then the optimal solution of the original problem. This approach lends itself naturally to a

high-level parallel implementation in which each processing node is given a tree to search. It

37

is a well-known fact that the branching in a search tree can be reduced significantly if tight

lower and upper bounds are known. If we partition the search space into N different parts, the

formulation of the original problem must be specialized for each different part by adding extra

constraints. In general, this will lead to tighter upper bounds. The maximum of the upper

bounds taken over all parts of the partition will produce a global upper bound which, in

general, will be tighter than upper bounds derived for the original problem.

The availability of a tight global upper bound early in the solution process has the added

advantage that the "quality" of any incumbent solution (the best feasible found so far) can be

appraised much more reliably. This means that if one wants to curtail the search one has a

better estimate of how "good" the incumbent solution really is. This is the main reason why

we chose the Branch-and-Bound algorithm and not Dynamic Programming. One of the

drawbacks of Dynamic Programming is that a solution is only available at the end of the

process.

Recently, Martello and Toth [13] included cardinality constraints (i.e. on the number of items

in the knapsack) to derive tight upper bounds in their Branch-and-Bound algorithm.

Encouraged by their results, we partition the search space by using equality cardinality

constraints. So, instead of solving the original problem an equivalent problem which, in

general, consists of one or more separate problems, is solved. Each separate problem is a 0-1

Knapsack Problem with an exact bound (an equality constraint) on the cardinality. These

subproblems will be called Exact k-item 0-1 Knapsack Problems. Pandit and Ravi Kumar [15]

used a similar approach for the solution of strongly-correlated knapsack problem instances.

By explicitly including a bound on the cardinality, one is able to reduce the size of each

subproblem and compute tight upper bounds. Furthermore, if a good feasible solution is found

along the way it may reduce the computational effort by reducing the number of trees

searched and the size of the subsequent search trees.

In the following section we will illustrate some of the properties of the cardinality constrained

0-1 Knapsack Problem. In Section 3 we define an equivalent problem and give a high-level

description of our partitioning scheme. The inclusion of the extra equality constraint can be

handled by using Lagrangian Relaxation or by using an LP-solver to provide upper bounds in

a Branch-and-Bound type algorithm. In order to compete favourably with current exact

38

algorithms for the 0-1 Knapsack Problem, one needs an algorithm that is efficient. Section 4

gives a brief description of two Lagrangian-based algorithms, proposed in Kruger [9], for

solving the Exact k-item 0-1 Knapsack Problems. Some techniques for reducing the size of

the subproblems are also given. Computational experiments are presented in Section 5,

followed by a conclusion.

2. CARDINALITY CONSTRAINED KNAPSACK PROBLEMS

2.1 The Maximum k-item Knapsack Problem

Assume that the items are sorted according to non-decreasing weights, i.e. 1,j ja a for j =

1, 2, ..., n - 1. Suppose that we fill our knapsack according to non-decreasing weights, i.e.

1

1 1

,
u uk k

j j

j j

a b a (5)

then it is clear that in any integer solution to (1), the number of items in our knapsack is

bounded from above by ku and hence we may introduce the canonical inequality

1

.
n

j u

j

x k (6)

Note that ku can be found without sorting by using a partitioning scheme similar to the one

used by Balas and Zemel [1] to find the break item.

Definition 1 (Maximum k-item 0-1 Knapsack Problem) Given k = ku, we define the

Maximum k-item 0-1 Knapsack Problem (MCP) as follows

1

1

1

() max

subject to ,

,

0,1 for 1, 2, , .

n

MCP u j j

j

n

j j

j

n

j u

j

j

z k c x

a x b

x k

x j n

 (7)

Solving the continuous case of the above problem using an LP-solver can be computationally

expensive. Martello and Toth [13] solved the continuous relaxation of (7) without an LP-

solver by using Lagragian relaxation to add the cardinality constraint to the objective

function.

39

More recently, Martello et al. [10] solved the continuous case of (7) by surrogate relaxing the

cardinality constraint with the knapsack constraint. Since we have only two constraints, we

can limit the explicit number of surrogate multipliers to one multiplier. Martello et al. [10]

prove some monotonicity properties and derive a special binary search, similar to that of

Martello and Toth [13], which considers only a limited number of integer surrogate

multipliers. They report that since the continuous bounds are generally tight, the transformed

problem tends to be solved much easier. According to them, their approach has the additional

advantage that if the optimal solution to the LP-relaxed problem is correct, i.e. the cardinality

constraint is satisfied, one also obtains a feasible solution to the original problem, thus solving

the problem to optimality.

2.2 The Minimum k-item Knapsack Problem

Assume that the items are sorted according to non-increasing profits, i.e.

1, for 1, 2, , 1.j jc c j n Suppose that zbest is our current best lower bound for the 0-1

Knapsack Problem and that we fill our knapsack according to non-increasing profits, i.e.

1

1 1

,
l lk k

j best j

j j

c z c (8)

then it is clear that in any integer solution to the 0-1 Knapsack Problem with solution value

better than zbest, the number of items in our knapsack is bounded from below by kl and hence

we may introduce the canonical inequality

1

.
n

j l

j

x k (9)

Note again that kl can be found without sorting by using a partitioning scheme similar to the

one used by Balas and Zemel [1] to find the break item.

Definition 2 (Minimum k-item 0-1 Knapsack Problem) Given k = kl, we define the

Minimum k-item 0-1 Knapsack Problem as follows

1

1

1

() max

subject to ,

,

0,1 for 1, 2, , .

n

NCP l j j

j

n

j j

j

n

j l

j

j

z k c x

a x b

x k

x j n

 (10)

40

Martello and Toth [13] and Martello et al. [10] solved the continuously relaxed version of

problem (10) with algorithms similar to the ones used to solve the Maximum k-item 0-1

Knapsack Problem and the reader is referred to the relevant articles and technical reports for

details.

In our partitioning scheme we solve the closely related cardinality constrained 0-1 Knapsack

Problem, in which the constraint is an equality constraint, repeatedly.

2.3 The Exact k-item Knapsack Problem

Suppose that we know beforehand that the number of items in an optimal solution to the 0-1

Knapsack Problem is, ke, then we can solve the original problem by solving the following

equivalent problem.

Definition 3 (Exact k-item 0-1 Knapsack Problem) Given k = ke, we define the Exact k-item

0-1 Knapsack Problem (EKP(k)) as follows

1

1

1

() max

subject to ,

,

0,1 for 1, 2, , .

n

EKP e j j

j

n

j j

j

n

j e

j

j

z k c x

a x b

x k

x j n

 (11)

if the solution exists, otherwise () 0.EKP ez k We denote the LP relaxation of EKP(k) by

LEKP(k) and the corresponding objective value by ().LEKPz k

Kruger [9] recently proposed two Lagragian-based Branch-and-Bound algorithms which

solve problem (11) exactly (see Section 4 for a brief description).

3. A PARTITIONING SCHEME

It is now easy to see that one can solve the original 0-1 Knapsack Problem by solving EKP(k)

for each k in the cardinality range, . This gives rise to the following equivalent formulation:

41

Definition 4 (The Equivalent Problem) Let best

best jx x be any feasible solution for the 0-1

Knapsack Problem and the associated cardinality range. Then solving the 0-1

Knapsack Problem is equivalent to solving the following problem:

max max , ,IP EKP best
k

z z k z (12)

where
1

.
n best

best j jj
z c x

We are now ready to state our algorithm.

3.1 An Exact Algorithm for the 0-1 Knapsack Problem

Given an algorithm, ECardKnap, which can solve any instance of the Exact k-item 0-1

Knapsack Problem exactly, the algorithm is as follows:

Algorithm 1 CardKnap

1: Determine the LP-solution for the original (unsorted) problem by using the partitioning

 scheme of Balas and Zemel [1];

2: Construct an incumbent solution with solution value, zbest;

3: Try to fix some variables at their upper or lower bounds, by using reduced costs;

4: Sort the reduced problem according to non-increasing profit densities;

5: Compute the break solution, x
b
, for the reduced problem;

6: Try and improve on zbest by filling the remaining capacity in a greedy fashion;

7: Reduce the problem by using probing to fix some variables at 0 or 1;

8: Call CardRange to calculate the cardinality range, , for the reduced problem and

1 2() : () for all , , ;LEKPg k z k k k k

9: for k = k1 to k2 do

10: if () bestg k z then

11: cycle;

12: end if

13: Solve the LP-relaxation of EKP(k) to get ();LEKPz k

14: Try to reduce the subproblem by using reduced costs (and zbest as lower bound)

 to fix some variables at 0 or 1;

15: Compute ()EKPz k by calling ECardKnap to solve the reduced problem;

16: if
k

EKP bestz z then

17: : k

best EKPz z (and save new solution);

18: if zbest = current upperbound, STOP;

19: end if

20: end for

42

3.2 Computing the Cardinality Range

We need the following definition and lemma to devise an algorithm to compute the

cardinality range.

Definition 5 Define () :LEKPz k by

1

1

1

() max

subject to ,

,

0 1 for 1, 2, , .

n

LEKP j j

j

n

j j

j

n

j

j

j

z k c x

a x b

x k

x j n

 (13)

if the solution exists, otherwise () 0.LEKPz k

Definition 6 (Quasi-concave Function) A function :g is called quasi-concave

over if, for any two points 1 2,k k such that 1 2() ()g k g k and for all [0, 1],

1 1 2() (1) ,g k g k k (14)

where is convex.

The proof of the following Lemma is given in Kruger [9].

Lemma 7 Suppose that zLEKP (k1) and zLEKP (k2) exists, where 1 2,k k and k1 < k2. Then

zLEKP (k) exists for all 1 2,k k k and 1 2: ,g k k defined by

() : () ,LEKPg k z k (15)

is a quasi-concave function over [k1, k2].

Note that Lemma 7 is in general not true for the case where g(k) is replaced by

() : () : .EKPg k z k

Definition 8 (Cardinality Range) Let zbest be a lower bound for zIP. We define the

cardinality range, , for the 0-1 Knapsack Problem by

1 1 2, 1, , () .LEKP bestk k k k z k z (16)

43

If x
b
 is the current incumbent solution, let

1

n b

best j jj
z c x and

1
.

n b

jj
k x The cardinality

range, , can be computed by Algorithm 2 which first tries to find the largest k2 {1, 2, ...,

k -1} searching from right to left, such that 2 2() : () .LEKP bestg k z k z If it finds such a k2, it

continues until it find the largest k1 {1, 2, ..., k2-1} such that 1 1(1) : (1) .LEKP bestg k z k z

Otherwise, it tries to find the smallest 1 1, ,k k n searching from left to right, such that

1 1() : () .LEKP bestg k z k z If it finds such a k1, it continues until it find the smallest k2

{k1+1, ..., n} such that 2 2(1) : (1) .LEKP bestg k z k z

Algorithm 2 CardRange

Require: zbest and k

Ensure: Cardinality range, = {k1,..., k2}

1: Initialize g(k) := zbest, k1 := 0 and k2 := 0;

2: for k := k -1 down to 1 do

3: Calculate () : () ;LEKPg k z k

4: if () (1) and (1) bestg k g k g k z then

5: k2 := k;

6: else if () (1) and () bestg k g k g k z then

7: if (1) bestg k z then k1 := k + 1;

8: if (k2 > 0) then return;

9: exit for-loop;

10: end if

11: end for

12: for k := k + 1 to n do

13: Calculate () : () ;LEKPg k z k

14: if (1) () and (1) bestg k g k g k z then

15: k1 := k;

16: else if (1) () and () bestg k g k g k z then

17: k2 := k - 1;

18: return;

19: end if

20: end for

The time complexity of the above algorithm is dominated by the calculation of zLEKP(k), but

recall that we use a tailor-made LP solver to solve it.

44

3.3 Upper Bounds

If

max ()range LEKP
k

z z k (17)

then, in general, rangez is a tight upper bound which has the potential of reducing the

integrality gap.

Computational experience has shown that the cardinality range for most of the data instances

is relatively small, the only exception being the subset-sum problem (see Section 5 for

definition). Furthermore, if the solution of zEKP(k), for a specific value of k, produces a better

lower bound than zbest, the cardinality range and zbest can be updated.

4. SOLVING THE EXACT k-ITEM 0-1 KNAPSACK PROBLEM

Algorithm 1 makes use of an algorithm, ECardKnap, which can efficiently solve any

instance of the Exact k-item 0-1 Knapsack Problem exactly. Kruger [9], recently, proposed

two such algorithms. The first algorithm Kruger [9, Chapter 6] uses Lagrangian relaxation to

add the knapsack constraint to the objective function. A specialized iterative, but finite and

exact, technique is used for determining the optimal Lagrange multipliers.

The second algorithm is an extension of the first. The partitioning idea is taken a step further

by introducing an equality constraint on the number of items included in the knapsack, that

are not part of the break solution. As a result of this, Kruger was able to derive tight upper

bounds and reduce some problem instances even further.

4.1 Problem Reduction

For each specific cardinality, k, one can do a reduction step in which the reduced costs of the

LP-solution are used to fix some extremal variables to 0 or 1. Using general LP-solvers is not

advised for solving the LP relaxed problem, because of the special structure of the linear

programming relaxation of EKP. Since there are only two constraints, the inverse of a basis,

for example, can be written down explicitly. We have implemented a tailor-made revised

simplex LP-solver (phase 2) that uses this (see Kruger [9] for details).

4.2 Constructing a Feasible Solution

The proof of the following proposition is obvious.

45

Proposition 9 Let *x be any basic feasible solution to the linear programming relaxation of

the Exact k-item 0-1 Knapsack Problem. Then

(i) *x has either 0 or 2 fractional components.

(ii) If *

ix and *

jx are fractional, then * * 1.i jx x

(iii)If *

ix and *

jx are fractional such that ai aj, then ai bred aj,

where

*

\{ , }

red r r

r N i j

b b a x (18)

and N = {1,2,...,n}.

This proposition can be used in the following way; one can solve LEKP(k) and note that if we

set xi = 1 and xj = 0 in (iii) of the above proposition and adjust the slack accordingly, we get

an integer feasible solution. Moreover, sometimes it is possible to construct an even better

integer feasible solution by setting xr = 1 where

*

\{ }
max : , 0 .r i i red i

i N j
c c a b x (19)

In our algorithm we use this technique repeatedly to construct our first incumbent solution.

5. EXPERIMENTAL RESULTS

In this section we present some results of an experimental testing of the ideas proposed in this

paper. For a more detailed report see Kruger [9].

5.1 Data Generation

The data instances used in the literature to test and compare knapsack algorithms are usually

classified as

(i) Uncorrelated (uc): weights aj and profits cj are uniformly distributed in [1, R].

(ii) Subset-sum (ss): weights aj are uniformly distributed in [1, R], and profits are set to

cj = aj.

(iii) Weakly correlated (wc): weights aj are uniformly distributed in [1, R], and profits cj

in [aj - , aj +] such that cj 1.

(iv) Strongly correlated (sc): weights aj are uniformly distributed in [1, R], and profits

are set to cj = aj + .

(v) Inverse strongly correlated (isc): profits cj are uniformly distributed in [1, R], and

weights are set to aj = cj + .

46

(vi) Almost strongly correlated (asc): weights aj are uniformly distributed in [1, R], and

profits cj in [aj + 0.99 , aj + 1.01].

(vii) Uncorrelated instances with nearly similar weights (ucsw): weights aj are uniformly

distributed in [100R, 100.1R], and profits cj in [1, R].

Of these classes, the strongly correlated (sc), almost strongly correlated (asc) and inverse

strongly correlated (isc) classes are regarded by many researchers in this field as the difficult

classes.

In the results that follow we do not report on uncorrelated instances with nearly similar

weights (ucsw) instances, because the integers involved for problems of high dimension could

not be handled by our (current) computer code.

We used an algorithm (similar to that given in Pisinger [16, pages 105-106]) to generate test

instances. The algorithm uses the standard lrand48 generator of the C library for generating

pseudo-random profits and weights. A seed for the algorithm is given by the C library

procedure srand48.

5.2 Experiments

The proposed algorithm, Algorithm 1, was coded in FORTRAN90 and tested on an IBM

RISC6000 with 128Mb of memory. We did one set of tests by using the partition-based

algorithm proposed in Kruger [9, Chapter 7] to solve the resulting Exact k-item 0-1 Knapsack

Problems.

Each value in the tables and graphs, shown below, is the average taken over 10 problem

instances (seed = 100, 200, ..., 1000). The values in the tables given between the parentheses

is the standard deviation for these 10 problems.

5.3 Results

(a) The reduction by the first reduction step was very good for the "easy" problem

instances but poor for the "difficult" instances. For the subset-sum instances this

reduction should be zero, but for large problems it often happens that the constructed

greedy solution is optimal.

47

(b) The reduction by the second reduction step was good for almost all problem instances.

This is partly due to the fact that good solutions are often found during the reduction

process itself.

(c) The reduction by the third reduction step was good for almost all problem instances.

For the subset-sum and strongly correlated instances this reduction should be zero, but

for large problems it often happens that an optimal greedy solution can be constructed.

What often happens in this case is that as soon as the maximum (equality) cardinality

constraint is enforced, an optimal solution is produced.

(d) Efforts to reduce the integrality gap by the inclusion of cardinality constraints

produced very strong upper bounds for "difficult" problem instances (sc, isc, asc), in

Fig. 1. It, therefore, seems that putting more effort into obtaining better feasible

solutions is the only way to further improve the performance in these instances.

0

50

100

150

200

250

300

350

400

450

10 100 1000 10000 100000

G
ap

Original Problem Dimension, N

R = 10000, δ = 1000

uc
ss

wc
sc

isc
asc

Figure 1: Integrality gap after CardRange (R = 1000, = 1000)

(e) The proposed algorithm lends itself naturally to a high-level parallel implementation.

Table 1 give an upper bound on the (average) number of trees that have to be searched

(potentially), while Table 2 report on the number of trees actually searched.

48

Table 1: Number of cardinalities in Cardinality Range (R = 1000, = 1000)

Original Size 50 100 500 1000 5000 10000 20000 50000

uc 2.60(1.02) 3.60(1.80) 5.20(0.98) 6.50(1.80) 7.80(1.94) 8.70(2.90) 13.4(2.7) 11.6(5.6)

ss 18.7(6.6) 40.7(2.3) 187.(62.) 329.(165.) 828.(1014.) 1653.(2025.) 828.(2483.) 0.00(0.00)

wc 4.50(0.67) 4.90(1.45) 8.50(1.91) 9.90(2.74) 15.3(4.6) 16.0(7.0) 19.5(6.4) 27.3(6.6)

sc 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

isc 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

asc 1.10(0.30) 1.00(0.00) 1.00(0.00) 1.10(0.30) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.20(0.40)

Note: A zero value in the table means that all the problems were solved prior to the cardinality calculations.

Table 2: Number of trees searched (R = 1000, = 1000)

Original Size 50 100 500 1000 5000 10000 20000 50000

uc 2.50(1.02) 3.10(1.14) 4.30(0.90) 4.80(1.08) 6.00(1.10) 6.90(1.30) 8.70(1.79) 8.00(2.93)

ss 1.10(0.54) 2.20(0.40) 1.70(0.64) 1.50(0.81) 0.60(0.80) 0.40(0.49) 0.10(0.30) 0.00(0.00)

wc 4.10(0.83) 4.30(1.10) 6.70(1.55) 7.50(1.36) 10.1(2.0) 10.6(3.5) 11.6(3.4) 10.9(3.9)

sc 0.90(0.30) 2.20(0.40) 1.70(0.64) 1.60(0.66) 0.90(0.83) 0.40(0.49) 0.20(0.40) 0.00(0.00)

isc 0.90(0.30) 1.30(0.90) 1.30(0.90) 1.40(1.02) 0.60(0.80) 0.30(0.46) 0.10(0.30) 0.00(0.00)

asc 1.10(0.30) 2.90(1.87) 4.90(2.21) 3.10(1.58) 2.50(1.69) 2.10(1.70) 1.60(0.92) 1.80(1.08)

(f) To demonstrate that the search strategies proposed in this paper show good promise

we have also done some comparative experiments. We obtained the C-code (combo)

of the algorithm proposed in Martello et al. [10] from Pisinger

(http://www.diku.dk/~pisinger/codes.html) and compared it with the

proposed algorithm. The experimental results showed (see for instance Fig. 2) that the

proposed search strategy is competitive with the best algorithms currently known,

especially for the so-called hard instances (strongly correlated, inverse strongly

correlated, almost strongly correlated). This must also be evaluated against the

background that combo is the product of more than two decades of research done by

the architects of the code, while our code is of experimental nature.

49

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 100 1000 10000 100000

C
PU

-t
im

e
(s

)

Problem dimension, N

GoalPart, R=1000
combo, R=1000

GoalPart, R=10000
combo, R=10000

Figure 2: GoalPart vs combo, Strongly Correlated (sc)

6. CONCLUSION AND FUTURE DIRECTIONS

6.1 Contributions

(a) We have shown that reformulating the 0-1 Knapsack Problem by partitioning the

search space through the inclusion of equality constraints on the knapsack's

cardinality, can produce very tight upper bounds. To our knowledge, we are the first to

introduce equality cardinality constraints to explicitly partition the search space. This

complements previous investigations on deriving valid inequalities to tighten problem

relaxations.

(b) The effectiveness of our approach was demonstrated by producing an experimental

code which compares very favourably with some of best computer codes currently

available. The competitiveness of our approach can mainly be attributed to the pruning

power by the inclusion of the cardinality constraints. Another major factor is the

efficiency of the algorithms used to solve the Exact k-item Knapsack Problems. This

can be attributed to the fact that no searching (in the normal sense) is needed to

complete partial solutions containing k - 1 items in the branch-and-bound process.

Furthermore, since these completed solutions are integer, the bounds they produce are

exact.

50

(c) Although the number of cardinalities in the cardinality range may be large, we have

shown that good feasible solutions found along the way, reduce the computational

effort by reducing the number of trees searched and the size of the search trees.

(d) Further investigations into the use of cardinality constraints to partition the search

space for general 0-1 Integer Linear Programs with the aim of deriving (novel) high-

level parallel algorithms now seem feasible.

6.2 Directions for Future Research

6.2.1 Parallelization

The algorithm proposed in this paper lend itself naturally to a high-level parallel

implementation in which each processing node is given a tree to search. We have done some

preliminary studies on an IBM SP2 machine with 7 nodes where we have used a master-slave

model. To devise a competitive master-slave implementation the following issues need to be

addressed to keep the message passing overhead at an acceptable level:

Is the master also going to search a tree?

How is the process at each node going to get subproblem data?

o Is the subproblem data to be written to a file and then read by each process?

o Is the data going to be packed into a message buffer and passed to the node by

some message passing interface like PVM or MPI?

If a good solution is found by one process, is it to be broadcasted to the other

processes?

If good solutions are to be broadcast to other processes, how often will this be done?

6.2.2 A Partitioning Approach to the Multi-dimensional Knapsack Problems

The LP-solution of the 0-1 Knapsack Problem can be written down analytically as soon as the

items have been sorted according to non-decreasing profit densities. We think that the

variables of the Multi-dimensional Knapsack Problem formulation can also be sorted

according to some criteria used in LP column selection. A partitioning scheme like the

proposed one can then be devised which may produce tight bounds. A successful partitioning

scheme will certainly have parallelization potential.

51

ACKNOWLEDGEMENTS

This research was partially funded by the Telkom Grintek Centre of Excellence at North-West

University.

REFERENCES

[1] E. BALAS and E. ZEMEL, An algorithm for large zero-one knapsack problems,

Operations Research, 28, 1130-1154 (1980).

[2] R.E. BELLMAN, Dynamic Programming, Princeton University Press, Princeton, NJ,

(1957).

[3] R.E. BELLMAN and S.E. DREYFUS, Applied Dynamic Programming, Princeton

University Press, Princeton, NJ, (1962).

[4] G.B. DANTZIG, Discrete variable extremum problems, Operations Research, 5, 266-

277 (1957).

[5] K. DUDZI SKI and S. WALUKIEWICZ, Exact methods for the knapsack problem

and its generalizations, European Journal of Operations Research, 28, 3-21 (1987).

[6] D. FAYARD and G. PLATEAU, An algorithm for the solution of the 0-1 knapsack

problem, Computing, 28, 269-287 (1982).

[7] E. HOROWITZ and S. SAHNI, Computing partitions with applications to the

knapsack problem, Journal of ACM, 21, 277-292 (1974).

[8] P.J. KOLESAR, A branch and bound algorithm for the knapsack problem,

Management Science, 13, 723-735 (1967).

[9] M.F. KRUGER, State space search models for discrete optimization, Knapsack

algorithms and related problems, PhD thesis, School of Computer, Statistical and

Mathematical Sciences, Potchefstroom University for Christian Higher Education,

Potchefstroom, South Africa (1998).

[10] S. MARTELLO, D. PISINGER and P. TOTH, Dynamic programming and tight

bounds for the 0-1 knapsack problem, Management Science, 45, 414-424 (1999).

[11] S. MARTELLO and P. TOTH, An upper bound for the zero-one knapsack problem

and a branch and bound algorithm, European Journal of Operations Research, 1, 169-

175 (1977).

[12] S. MARTELLO and P. TOTH, Knapsack Problems: Algorithms and Computer

Implementations, Wiley, Chichester, England (1990).

[13] S. MARTELLO and P. TOTH, Upper bounds and algorithms for hard 0-1 knapsack

problems, Operations Research, 45, 768-783 (1997).

52

[14] R.M. NAUSS, An efficient algorithm for the 0-1 knapsack problem, Management

Science, 23, 27-31 (1976).

[15] S.N.N. PANDIT and M. RAVI KUMAR, A lexicographic search for strongly

correlated 0-1 knapsack problems, Opsearch, 30, 76-116 (1993).

[16] D. PISINGER, Algorithms for Knapsack Problems, PhD thesis, DIKU, University of

Copenhagen, Denmark (1995).

[17] P. TOTH, Dynamic programming algorithms for the zero-one knapsack problem,

Computing, 25, 29-45 (1980).

