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ABSTRACT 

The application of valid inequalities to provide relaxations which can produce tight bounds, is 

now common practice in Combinatorial Optimisation. This paper attempts to complement 

current theoretical investigations in this regard. We experimentally search for "valid" 

equalities which have the potential of strengthening the problem's formulation. 

Recently, Martello and Toth [13] included cardinality constraints to derive tight upper bounds 

for the 0-1 Knapsack Problem. Encouraged by their results, we partition the search space by 

using equality cardinality constraints. Instead of solving the original problem, an equivalent 

problem, which consists of one or more 0-1 Knapsack Problem with an exact cardinality 

bound, is solved.

By explicitly including a bound on the cardinality, one is able to reduce the size of each 

subproblem and compute tight upper bounds. Good feasible solutions found along the way are 

employed to reduce the computational effort by reducing the number of trees searched and the 

size of the subsequent search trees. 

We give a brief description of two Lagrangian-based Branch-and-Bound algorithms proposed 

in Kruger [9] for solving the exact cardinality bounded subproblems and report on results of 

numerical experiments with a sequential implementation. Implications for and strategies 

towards parallel implementation are also given. 

Keywords: Search Algorithms, Combinatorial Optimisation, Mathematical Programming. 

1. INTRODUCTION AND MOTIVATION 

Let n items with weights a1, a2, ..., an, and c1, c2, ..., cn be given. The Knapsack Problem is to 

pack a given knapsack with capacity b so as to maximize the total profit. The 0-1 Knapsack 

Problem may thus be formulated as 
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where all data are integers, and xj = 1 if item j is included in the knapsack and 0 otherwise. 

Without loss in generality we may assume that the aj > 0, cj > 0, aj b, for j = 1, 2, ..., n and 
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An upper bound z , for IPz , can be produced by relaxing the integrality constraints on the 

variables xj and solving the Linear Programming relaxation problem and setting LPz z ,

where z  is the largest integer z. If the weights and profits are sorted according to non-

increasing profit density, i.e. 
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then the LP solution is given by Dantzig [4] 
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We will call the above LP-solution with xt set to 0, the break solution and t the break item.

The bound z is called the Dantzig-bound. If the items are already sorted the computation of 

LPz  is done in O(n) time. 

1.1  Historical Notes on Exact Algorithms 

The 0-1 Knapsack Problem has received considerable attention, not only because it has 

several important applications in itself, but also as a substructure in many discrete 
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optimisation problems. The techniques for exactly solving the 0-1 Knapsack Problem can be 

classified into three groups: Dynamic Programming based algorithms, Branch-and-Bound 

based algorithms, and hybrid approaches. 

Early papers which specialized Dynamic Programming for the 0-1 Knapsack Problem include 

Bellman [2], Dantzig [4] and Bellman and Dreyfus [3]. The idea is to first fill a small 

knapsack optimally and then, using this information, fill larger a knapsack optimally. This 

process is repeated until the original problem is solved completely. Some computational 

improvements were proposed by Toth in [17]. 

In his award winning PhD-thesis Pisinger [16, Chapter 4] devised a dynamic programming 

recursion, which, although the worst-case time complexity is still O(bn) as for the Bellman 

recursion, solves most relatively large problem instances without enumerating too many 

variables. The algorithm starts from the break solution and at each stage either inserts or 

removes an item. Strong upper bounds are used to limit the number states in the recursion. 

The enumeration process terminates due to some bounding tests, in which case it is possible 

to prove that the current incumbent solution is optimal. 

Recently, Martello, Pisinger and Toth [10] incorporated cardinality constraints into a very 

efficient Dynamic Programming algorithm. Although the worst-case time complexity of their 

algorithm is still O(bn), they solved most instances quite quickly due to the tight bounds 

produced by the cardinality constraints. 

One of the first Branch-and-Bound algorithms for the 0-1 Knapsack Problem was proposed 

by Kolesar [8]. It was a straightforward specialization of the Land and Doig algorithm for 

general integer programming problems. The algorithm used the best bound selection rule and 

branching was done on the fractional variable. The large computer memory requirements of 

this algorithm led to the development of other Branch-and-Bound algorithms by Horowitz and 

Sahni [7], Nauss [14], Fayard and Plateau [6] and Martello and Toth [11], to name but a few. 

These algorithms use a depth-first selection rule and branching is done on the free variable 

with the smallest index (assuming that the items are sorted according to non-increasing profit 

densities). The depth-first enumeration limits the space consumption of these algorithms. 

Many of these algorithms include a reduction or preprocessing phase in which some of the 

extremal variables are fixed to 0 or 1. 
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The performance of a Branch-and-Bound algorithm very much depends on the tightness and 

application of upper bounds. Several bounds were proposed in the literature of which Martello 

and Toth [11, 12, 13] were some of the main contributors. Bounds are generally based on 

Lagrangian relaxation, partial enumeration, the adding of valid inequalities, and relaxations of 

these valid inequalities. 

Martello and Toth [11] compared some of these algorithms. Their results showed that "easy" 

problem instances can be solved efficiently. 

Hybrid approaches to the solving of the 0-1 Knapsack Problem are mainly devised by 

combining Branch-and-Bound with Dynamic Programming. One approach is to do a Branch-

and-Bound search up to a certain time limit and thereafter automatically switch over to 

Dynamic Programming (see Dudzi ski and Walukiewicz [5]). An approach recently proposed 

by Martello and Toth [13] , is to do a Branch-and-Bound search down to a certain level in the 

search tree or while the residual capacity is above a certain threshold value. Dynamic 

Programming is then used to solve the subproblem to optimality. 

1.2 Aspects of Search Models 

In order to avoid enumerating all feasible solutions a good search strategy and a bounding

procedure are crucial. Bounding procedures are usually based on the exact solution of a 

relaxed problem which is obtained from the original problem by relaxing or dropping some of 

the constraints. The application of valid inequalities to provide relaxations which can produce 

tight bounds, is now common practice. With this approach one tries to find a polyhedral 

description of the convex hull of the feasible points. This paper attempts to complement 

current theoretical investigations in this regard. We experimentally search for "valid" 

equalities which have the potential of strengthening the problem's formulation. The inclusion 

of these equalities in the problem formulation partitions the search space. 

If one partitions the search space before it is searched and concentrate the search only on 

those parts that have the potential of delivering feasible solutions better than the current best, 

one has more than one search tree. The best solution found amongst these trees (forest search) 

is then the optimal solution of the original problem. This approach lends itself naturally to a 

high-level parallel implementation in which each processing node is given a tree to search. It 
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is a well-known fact that the branching in a search tree can be reduced significantly if tight 

lower and upper bounds are known. If we partition the search space into N different parts, the 

formulation of the original problem must be specialized for each different part by adding extra 

constraints. In general, this will lead to tighter upper bounds. The maximum of the upper 

bounds taken over all parts of the partition will produce a global upper bound which, in 

general, will be tighter than upper bounds derived for the original problem. 

The availability of a tight global upper bound early in the solution process has the added 

advantage that the "quality" of any incumbent solution (the best feasible found so far) can be 

appraised much more reliably. This means that if one wants to curtail the search one has a 

better estimate of how "good" the incumbent solution really is. This is the main reason why 

we chose the Branch-and-Bound algorithm and not Dynamic Programming. One of the 

drawbacks of Dynamic Programming is that a solution is only available at the end of the 

process.

Recently, Martello and Toth [13] included cardinality constraints (i.e. on the number of items 

in the knapsack) to derive tight upper bounds in their Branch-and-Bound algorithm. 

Encouraged by their results, we partition the search space by using equality cardinality 

constraints. So, instead of solving the original problem an equivalent problem which, in 

general, consists of one or more separate problems, is solved. Each separate problem is a 0-1 

Knapsack Problem with an exact bound (an equality constraint) on the cardinality. These 

subproblems will be called Exact k-item 0-1 Knapsack Problems. Pandit and Ravi Kumar [15] 

used a similar approach for the solution of strongly-correlated knapsack problem instances. 

By explicitly including a bound on the cardinality, one is able to reduce the size of each 

subproblem and compute tight upper bounds. Furthermore, if a good feasible solution is found 

along the way it may reduce the computational effort by reducing the number of trees 

searched and the size of the subsequent search trees. 

In the following section we will illustrate some of the properties of the cardinality constrained 

0-1 Knapsack Problem. In Section 3 we define an equivalent problem and give a high-level 

description of our partitioning scheme. The inclusion of the extra equality constraint can be 

handled by using Lagrangian Relaxation or by using an LP-solver to provide upper bounds in 

a Branch-and-Bound type algorithm. In order to compete favourably with current exact 
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algorithms for the 0-1 Knapsack Problem, one needs an algorithm that is efficient. Section 4 

gives a brief description of two Lagrangian-based algorithms, proposed in Kruger [9], for 

solving the Exact k-item 0-1 Knapsack Problems. Some techniques for reducing the size of 

the subproblems are also given. Computational experiments are presented in Section 5, 

followed by a conclusion. 

2. CARDINALITY CONSTRAINED KNAPSACK PROBLEMS 

2.1 The Maximum k-item Knapsack Problem 

Assume that the items are sorted according to non-decreasing weights, i.e. 1,j ja a  for  j = 

1, 2, ..., n - 1. Suppose that we fill our knapsack according to non-decreasing weights, i.e. 

1

1 1

,
u uk k

j j

j j

a b a  (5) 

then it is clear that in any integer solution to (1), the number of items in our knapsack is 

bounded from above by ku and hence we may introduce the canonical inequality 
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Note that ku can be found without sorting by using a partitioning scheme similar to the one 

used by Balas and Zemel [1] to find the break item. 

Definition 1 (Maximum k-item 0-1 Knapsack Problem) Given k = ku, we define the

Maximum k-item 0-1 Knapsack Problem (MCP) as follows
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Solving the continuous case of the above problem using an LP-solver can be computationally 

expensive. Martello and Toth [13] solved the continuous relaxation of (7) without an LP-

solver by using Lagragian relaxation to add the cardinality constraint to the objective 

function.
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More recently, Martello et al. [10] solved the continuous case of (7) by surrogate relaxing the 

cardinality constraint with the knapsack constraint. Since we have only two constraints, we 

can limit the explicit number of surrogate multipliers to one multiplier. Martello et al. [10] 

prove some monotonicity properties and derive a special binary search, similar to that of 

Martello and Toth [13], which considers only a limited number of integer surrogate 

multipliers. They report that since the continuous bounds are generally tight, the transformed 

problem tends to be solved much easier. According to them, their approach has the additional 

advantage that if the optimal solution to the LP-relaxed problem is correct, i.e. the cardinality 

constraint is satisfied, one also obtains a feasible solution to the original problem, thus solving 

the problem to optimality. 

2.2 The Minimum k-item Knapsack Problem 

Assume that the items are sorted according to non-increasing profits, i.e. 

1,  for 1, 2, , 1.j jc c j n  Suppose that zbest is our current best lower bound for the 0-1 

Knapsack Problem and that we fill our knapsack according to non-increasing profits, i.e. 
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j best j
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c z c  (8) 

then it is clear that in any integer solution to the 0-1 Knapsack Problem with solution value 

better than zbest, the number of items in our knapsack is bounded from below by kl and hence 

we may introduce the canonical inequality
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Note again that kl can be found without sorting by using a partitioning scheme similar to the 

one used by Balas and Zemel [1] to find the break item. 

Definition 2 (Minimum k-item 0-1 Knapsack Problem) Given k = kl, we define the

Minimum k-item 0-1 Knapsack Problem as follows
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Martello and Toth [13] and Martello et al. [10] solved the continuously relaxed version of 

problem (10) with algorithms similar to the ones used to solve the Maximum k-item 0-1 

Knapsack Problem and the reader is referred to the relevant articles and technical reports for 

details.

In our partitioning scheme we solve the closely related cardinality constrained 0-1 Knapsack 

Problem, in which the constraint is an equality constraint, repeatedly. 

2.3 The Exact k-item Knapsack Problem 

Suppose that we know beforehand that the number of items in an optimal solution to the 0-1 

Knapsack Problem is, ke, then we can solve the original problem by solving the following 

equivalent problem. 

Definition 3 (Exact k-item 0-1 Knapsack Problem) Given k = ke, we define the Exact k-item 

0-1 Knapsack Problem (EKP(k)) as follows
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if the solution exists, otherwise ( ) 0.EKP ez k  We denote the LP relaxation of EKP(k) by 

LEKP(k) and the corresponding objective value by ( ).LEKPz k

Kruger [9] recently proposed two Lagragian-based Branch-and-Bound algorithms which 

solve problem (11) exactly (see Section 4 for a brief description). 

3. A PARTITIONING SCHEME 

It is now easy to see that one can solve the original 0-1 Knapsack Problem by solving EKP(k)

for each k in the cardinality range, . This gives rise to the following equivalent formulation: 



41

Definition 4 (The Equivalent Problem) Let best

best jx x be any feasible solution for the 0-1

Knapsack Problem and the associated cardinality range. Then solving the 0-1

Knapsack Problem is equivalent to solving the following problem:

max max , ,IP EKP best
k

z z k z  (12) 

where
1

.
n best

best j jj
z c x

We are now ready to state our algorithm. 

3.1 An Exact Algorithm for the 0-1 Knapsack Problem 

Given an algorithm, ECardKnap, which can solve any instance of the Exact k-item 0-1 

Knapsack Problem exactly, the algorithm is as follows: 

Algorithm 1 CardKnap

1:  Determine the LP-solution for the original (unsorted) problem by using the partitioning 

     scheme of Balas and Zemel [1]; 

2:  Construct an incumbent solution with solution value, zbest;

3:  Try to fix some variables at their upper or lower bounds, by using reduced costs; 

4:  Sort the reduced problem according to non-increasing profit densities; 

5:  Compute the break solution, x
b
, for the reduced problem; 

6:  Try and improve on zbest by filling the remaining capacity in a greedy fashion; 

7:  Reduce the problem by using probing to fix some variables at 0 or 1; 

8:  Call CardRange to calculate the cardinality range, , for the reduced problem and 

1 2( ) : ( )  for all , , ;LEKPg k z k k k k

9: for k = k1 to k2 do

10: if ( ) bestg k z  then

11: cycle;

12: end if

13:     Solve the LP-relaxation of EKP(k) to get ( );LEKPz k

14:     Try to reduce the subproblem by using reduced costs (and zbest as lower bound) 

           to fix some variables at 0 or 1; 

15:     Compute ( )EKPz k  by calling ECardKnap to solve the reduced problem; 

16: if
k

EKP bestz z then

17:       : k

best EKPz z  (and save new solution); 

18: if zbest = current upperbound, STOP; 

19: end if

20: end for
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3.2 Computing the Cardinality Range

We need the following definition and lemma to devise an algorithm to compute the 

cardinality range. 

Definition 5 Define ( ) :LEKPz k by

1

1

1

( ) max

subject to  ,
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if the solution exists, otherwise ( ) 0.LEKPz k

Definition 6  (Quasi-concave Function) A function :g is called quasi-concave 

over if, for any two points 1 2,k k such that 1 2( ) ( )g k g k and for all [0, 1], 

1 1 2( ) (1 ) ,g k g k k  (14) 

where is convex.

The proof of the following Lemma is given in Kruger [9]. 

Lemma 7 Suppose that zLEKP (k1) and zLEKP (k2) exists, where 1 2,k k and k1 < k2. Then

zLEKP (k) exists for all 1 2,k k k and 1 2: ,g k k defined by

( ) : ( ) ,LEKPg k z k  (15) 

is a quasi-concave function over [k1, k2].

Note that Lemma 7 is in general not true for the case where g(k) is replaced by 

( ) : ( ) : .EKPg k z k

Definition 8  (Cardinality Range)  Let zbest be a lower bound for zIP. We define the 

cardinality range, , for the 0-1 Knapsack Problem by

1 1 2, 1, , ( ) .LEKP bestk k k k z k z  (16) 
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If x
b
 is the current incumbent solution, let 

1

n b

best j jj
z c x  and 

1
.

n b

jj
k x  The cardinality 

range, , can be computed by Algorithm 2 which first tries to find the largest k2 {1, 2, ..., 

k -1} searching from right to left, such that 2 2( ) : ( ) .LEKP bestg k z k z  If it finds such a k2, it 

continues until it find the largest k1 {1, 2, ..., k2-1} such that 1 1( 1) : ( 1) .LEKP bestg k z k z

Otherwise, it tries to find the smallest 1 1, ,k k n searching from left to right, such that 

1 1( ) : ( ) .LEKP bestg k z k z  If it finds such a k1, it continues until it find the smallest k2

{k1+1, ..., n} such that 2 2( 1) : ( 1) .LEKP bestg k z k z

Algorithm 2 CardRange

Require: zbest and k

Ensure: Cardinality range,  = {k1,..., k2}

1: Initialize g(k ) := zbest, k1 := 0 and k2 := 0; 

2: for k := k -1 down to 1 do

3:     Calculate ( ) : ( ) ;LEKPg k z k

4:     if ( ) ( 1) and ( 1) bestg k g k g k z then

5:         k2 := k;

6:     else if ( ) ( 1) and ( ) bestg k g k g k z  then 

7:         if ( 1) bestg k z then k1 := k + 1;

8:         if (k2 > 0) then return;

9:             exit for-loop;

10:     end if 

11: end for 

12: for k := k  + 1 to n do

13:     Calculate ( ) : ( ) ;LEKPg k z k

14:     if ( 1) ( ) and ( 1) bestg k g k g k z  then

15:         k1 := k;

16:     else if ( 1) ( ) and ( ) bestg k g k g k z  then 

17:         k2 := k - 1; 

18:         return;

19:     end if 

20: end for 

The time complexity of the above algorithm is dominated by the calculation of zLEKP(k), but 

recall that we use a tailor-made LP solver to solve it. 
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3.3 Upper Bounds 

If

max ( )range LEKP
k

z z k  (17) 

then, in general, rangez  is a tight upper bound which has the potential of reducing the 

integrality gap. 

Computational experience has shown that the cardinality range for most of the data instances 

is relatively small, the only exception being the subset-sum problem (see Section 5 for 

definition). Furthermore, if the solution of zEKP(k), for a specific value of k, produces a better 

lower bound than zbest, the cardinality range and zbest can be updated. 

4. SOLVING THE EXACT k-ITEM 0-1 KNAPSACK PROBLEM 

Algorithm 1 makes use of an algorithm, ECardKnap, which can efficiently solve any 

instance of the Exact k-item 0-1 Knapsack Problem exactly. Kruger [9], recently, proposed 

two such algorithms. The first algorithm Kruger [9, Chapter 6] uses Lagrangian relaxation to 

add the knapsack constraint to the objective function. A specialized iterative, but finite and 

exact, technique is used for determining the optimal Lagrange multipliers.  

The second algorithm is an extension of the first. The partitioning idea is taken a step further 

by introducing an equality constraint on the number of items included in the knapsack, that 

are not part of the break solution. As a result of this, Kruger was able to derive tight upper 

bounds and reduce some problem instances even further. 

4.1 Problem Reduction 

For each specific cardinality, k, one can do a reduction step in which the reduced costs of the 

LP-solution are used to fix some extremal variables to 0 or 1. Using general LP-solvers is not 

advised for solving the LP relaxed problem, because of the special structure of the linear 

programming relaxation of EKP. Since there are only two constraints, the inverse of a basis, 

for example, can be written down explicitly. We have implemented a tailor-made revised 

simplex LP-solver (phase 2) that uses this (see Kruger [9] for details). 

4.2 Constructing a Feasible Solution 

The proof of the following proposition is obvious. 
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Proposition 9 Let *x  be any basic feasible solution to the linear programming relaxation of 

the Exact k-item 0-1 Knapsack Problem. Then

(i) *x has either 0 or 2 fractional components.

(ii) If *

ix and *

jx are fractional, then * * 1.i jx x

(iii)If *

ix and *

jx are fractional such that ai  aj, then ai bred  aj,

where

*

\{ , }

red r r

r N i j

b b a x  (18) 

and  N = {1,2,...,n}.

This proposition can be used in the following way; one can solve LEKP(k) and note that if we 

set xi = 1 and xj = 0 in (iii) of the above proposition and adjust the slack accordingly, we get 

an integer feasible solution. Moreover, sometimes it is possible to construct an even better 

integer feasible solution by setting xr = 1 where 

*

\{ }
max : , 0 .r i i red i

i N j
c c a b x  (19) 

In our algorithm we use this technique repeatedly to construct our first incumbent solution. 

5. EXPERIMENTAL RESULTS 

In this section we present some results of an experimental testing of the ideas proposed in this 

paper. For a more detailed report see Kruger [9]. 

5.1 Data Generation 

The data instances used in the literature to test and compare knapsack algorithms are usually 

classified as 

(i) Uncorrelated (uc): weights aj and profits cj are uniformly distributed in [1, R].

(ii) Subset-sum (ss): weights aj are uniformly distributed in [1, R], and profits are set to  

cj = aj.

(iii) Weakly correlated (wc): weights aj are uniformly distributed in [1, R], and profits cj

in [aj - , aj + ] such that cj  1. 

(iv) Strongly correlated (sc): weights aj are uniformly  distributed in [1, R], and profits 

are set to cj = aj + .

(v) Inverse strongly correlated (isc): profits cj are uniformly  distributed in [1, R], and 

weights are set to aj = cj + .
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(vi) Almost strongly correlated (asc): weights aj are uniformly distributed in [1, R], and 

profits cj in [aj + 0.99 , aj + 1.01 ].

(vii) Uncorrelated instances with nearly similar weights (ucsw): weights aj are uniformly 

distributed in [100R, 100.1R], and profits cj in [1, R]. 

Of these classes, the strongly correlated (sc), almost strongly correlated (asc) and inverse 

strongly correlated (isc) classes are regarded by many researchers in this field as the difficult

classes.

In the results that follow we do not report on uncorrelated instances with nearly similar 

weights (ucsw) instances, because the integers involved for problems of high dimension could 

not be handled by our (current) computer code. 

We used an algorithm (similar to that given in Pisinger [16, pages 105-106]) to generate test 

instances. The algorithm uses the standard lrand48 generator of the C library for generating 

pseudo-random profits and weights. A seed for the algorithm is given by the C library 

procedure srand48.

5.2 Experiments 

The proposed algorithm, Algorithm 1, was coded in FORTRAN90 and tested on an IBM 

RISC6000 with 128Mb of memory. We did one set of tests by using the partition-based 

algorithm proposed in Kruger [9, Chapter 7] to solve the resulting Exact k-item 0-1 Knapsack 

Problems. 

Each value in the tables and graphs, shown below, is the average taken over 10 problem 

instances (seed = 100, 200, ..., 1000). The values in the tables given between the parentheses 

is the standard deviation for these 10 problems. 

5.3 Results 

(a) The reduction by the first reduction step was very good for the "easy" problem 

instances but poor for the "difficult" instances. For the subset-sum instances this 

reduction should be zero, but for large problems it often happens that the constructed 

greedy solution is optimal. 



47

(b) The reduction by the second reduction step was good for almost all problem instances. 

This is partly due to the fact that good solutions are often found during the reduction 

process itself. 

(c) The reduction by the third reduction step was good for almost all problem instances. 

For the subset-sum and strongly correlated instances this reduction should be zero, but 

for large problems it often happens that an optimal greedy solution can be constructed. 

What often happens in this case is that as soon as the maximum (equality) cardinality 

constraint is enforced, an optimal solution is produced. 

(d) Efforts to reduce the integrality gap by the inclusion of cardinality constraints 

produced very strong upper bounds for "difficult" problem instances (sc, isc, asc), in 

Fig. 1. It, therefore, seems that putting more effort into obtaining better feasible 

solutions is the only way to further improve the performance in these instances. 
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Figure 1: Integrality gap after CardRange (R = 1000,  = 1000) 

(e) The proposed algorithm lends itself naturally to a high-level parallel implementation. 

Table 1 give an upper bound on the (average) number of trees that have to be searched 

(potentially), while Table 2 report on the number of trees actually searched. 
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Table 1: Number of cardinalities in Cardinality Range (R = 1000,  = 1000) 

Original Size 50 100 500 1000 5000 10000 20000 50000 

uc 2.60(1.02) 3.60(1.80) 5.20(0.98) 6.50(1.80) 7.80(1.94) 8.70(2.90) 13.4(2.7) 11.6(5.6) 

ss 18.7(6.6) 40.7(2.3) 187.(62.) 329.(165.) 828.(1014.) 1653.(2025.) 828.(2483.) 0.00(0.00) 

wc 4.50(0.67) 4.90(1.45) 8.50(1.91) 9.90(2.74) 15.3(4.6) 16.0(7.0) 19.5(6.4) 27.3(6.6) 

sc 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 

isc 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 

asc 1.10(0.30) 1.00(0.00) 1.00(0.00) 1.10(0.30) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.20(0.40) 

Note: A zero value in the table means that all the problems were solved prior to the cardinality calculations. 

Table 2: Number of trees searched (R = 1000,  = 1000) 

Original Size 50 100 500 1000 5000 10000 20000 50000 

uc 2.50(1.02) 3.10(1.14) 4.30(0.90) 4.80(1.08) 6.00(1.10) 6.90(1.30) 8.70(1.79) 8.00(2.93) 

ss 1.10(0.54) 2.20(0.40) 1.70(0.64) 1.50(0.81) 0.60(0.80) 0.40(0.49) 0.10(0.30) 0.00(0.00) 

wc 4.10(0.83) 4.30(1.10) 6.70(1.55) 7.50(1.36) 10.1(2.0) 10.6(3.5) 11.6(3.4) 10.9(3.9) 

sc 0.90(0.30) 2.20(0.40) 1.70(0.64) 1.60(0.66) 0.90(0.83) 0.40(0.49) 0.20(0.40) 0.00(0.00) 

isc 0.90(0.30) 1.30(0.90) 1.30(0.90) 1.40(1.02) 0.60(0.80) 0.30(0.46) 0.10(0.30) 0.00(0.00) 

asc 1.10(0.30) 2.90(1.87) 4.90(2.21) 3.10(1.58) 2.50(1.69) 2.10(1.70) 1.60(0.92) 1.80(1.08) 

(f) To demonstrate that the search strategies proposed in this paper show good promise 

we have also done some comparative experiments. We obtained the C-code (combo)

of the algorithm proposed in Martello et al. [10] from Pisinger 

(http://www.diku.dk/~pisinger/codes.html) and compared it with the 

proposed algorithm. The experimental results showed (see for instance Fig. 2) that the 

proposed search strategy is competitive with the best algorithms currently known, 

especially for the so-called hard instances (strongly correlated, inverse strongly 

correlated, almost strongly correlated). This must also be evaluated against the 

background that combo is the product of more than two decades of research done by 

the architects of the code, while our code is of experimental nature. 
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Figure 2: GoalPart vs combo, Strongly Correlated (sc) 

6. CONCLUSION AND FUTURE DIRECTIONS 

6.1 Contributions 

(a) We have shown that reformulating the 0-1 Knapsack Problem by partitioning the 

search space through the inclusion of equality constraints on the knapsack's 

cardinality, can produce very tight upper bounds. To our knowledge, we are the first to 

introduce equality cardinality constraints to explicitly partition the search space. This 

complements previous investigations on deriving valid inequalities to tighten problem 

relaxations. 

(b) The effectiveness of our approach was demonstrated by producing an experimental 

code which compares very favourably with some of best computer codes currently 

available. The competitiveness of our approach can mainly be attributed to the pruning 

power by the inclusion of the cardinality constraints. Another major factor is the 

efficiency of the algorithms used to solve the Exact k-item Knapsack Problems. This 

can be attributed to the fact that no searching (in the normal sense) is needed to 

complete partial solutions containing k - 1 items in the branch-and-bound process. 

Furthermore, since these completed solutions are integer, the bounds they produce are 

exact.
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(c) Although  the number of cardinalities in the cardinality range may be large, we have 

shown that good feasible solutions found along the way, reduce the computational 

effort by reducing the number of trees searched and the size of the search trees. 

(d) Further investigations into the use of cardinality constraints to partition the search 

space for general 0-1 Integer Linear Programs with the aim of deriving (novel) high-

level parallel algorithms now seem feasible.  

6.2 Directions for Future Research 

6.2.1 Parallelization 

The algorithm proposed in this paper lend itself naturally to a high-level parallel 

implementation in which each processing node is given a tree to search. We have done some 

preliminary studies on an IBM SP2 machine with 7 nodes where we have used a master-slave 

model. To devise a competitive master-slave implementation the following issues need to be 

addressed to keep the message passing overhead at an acceptable level: 

Is the master also going to search a tree? 

How is the process at each node going to get subproblem data? 

o Is the subproblem data to be written to a file and then read by each process? 

o Is the data going to be packed into a message buffer and passed to the node by 

some message passing interface like PVM or MPI? 

If a good solution is found by one process, is it to be broadcasted to the other 

processes? 

If good solutions are to be broadcast to other processes, how often will this be done? 

6.2.2 A Partitioning Approach to the Multi-dimensional Knapsack Problems 

The LP-solution of the 0-1 Knapsack Problem can be written down analytically as soon as the 

items have been sorted according to non-decreasing profit densities. We think that the 

variables of the Multi-dimensional Knapsack Problem formulation can also be sorted 

according to some criteria used in LP column selection. A partitioning scheme like the 

proposed one can then be devised which may produce tight bounds. A successful partitioning 

scheme will certainly have parallelization potential. 
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