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Abstract
Research in the domain of school timetabling has essentially focused on applying various
techniques such as integer programming, constraint satisfaction, simulated annealing, tabu
search and genetic algorithms to calculate a solution to the problem. Optimization tech-
niques like simulated annealing, tabu search and genetic algorithms generally explore a so-
lution space. Hyper-heuristics, on the other hand, search a heuristic space with the aim of
providing a more generalized solution to the particular optimisation problem. This is a fairly
new technique that has proven to be successful in solving various combinatorial optimisation
problems. There has not been much research into the use of hyper-heuristics to solve the
school timetabling problem. This study investigates the use of a genetic algorithm selection
perturbative hyper-heuristic for solving the school timetabling problem. A two-phased ap-
proach is taken, with the first phase focusing on hard constraints, and the second on soft
constraints. The genetic algorithm uses tournament selection to choose parents, to which
the mutation and crossover operators are applied. The genetic algorithm selection pertur-
bative hyper-heuristic (GASPHH) was applied to five different school timetabling problems.
The performance of the hyper-heuristic was compared to that of other methods applied to
these problems, including a genetic algorithm that was applied directly to the solution space.
GASPHH performed well over all five different types of school timetabling problems.
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1 Introduction

Educational timetabling encompasses university examination, university course and school
timetabling. These problems vary in terms of requirements and constraints to such an ex-
tent that methods providing a solution to one type of timetabling problem may not be
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effective in solving the other two types. Thus, these three timetabling problems have been
studied as different optimisation problems [19, 29, 30]. The school timetabling problem
has been fairly well researched. Various optimisation methods have been applied to this
problem including bee algorithms, constraint satisfaction methods, cyclic transfers, evolu-
tionary algorithms, GRASP, integer programming, neural networks, simulated annealing
and tiling algorithms [27]. School timetabling problems differ drastically as they are de-
pendent on the educational system of the particular country [28]. Thus, a method that
performs well in solving one school timetabling problem may not produce good results for
another. Hyper-heuristics, defined as “heuristics to choose heuristics”, aim at providing a
generalized solution1 to a particular problem, instead of the best solution for one or more
problem instances [11].

Hyper-heuristics have proven to be effective in solving combinatorial optimisation prob-
lems. Selection perturbative hyper-heuristics have produced good results for the maximum
satisfiability, one-dimensional bin-packing, permutation flow shop, personnel scheduling,
travelling salesman, and vehicle routing problems, and have been able to provide a general-
ized solution across all six of these domains [21]. Previous research into solving the school
timetabling problem using genetic algorithms revealed that the most effective mutation
operators were problem dependent, i.e. different operators produced the best results for
each school timetabling problem. Thus, it is anticipated that a selection perturbative
hyper-heuristic would be effective in providing a solution to the school timetabling prob-
lem that is capable of generalizing over a set of problems, with different sets of low-level
heuristics used for the different types of school timetabling problems.

There has not been much research into the use of hyper-heuristics for solving the school
timetabling problem. Given the good performance of selection perturbative hyper-heuristics
in solving other combinatorial optimisation problems, this paper investigates the use
of a genetic algorithm selection perturbative hyper-heuristic (GASPHH) for the school
timetabling problem. GASPHH was evaluated on five different school timetabling prob-
lems, and was able to produce feasible solutions of good quality for each problem. The
results produced by GASPHH were found to be better than other methods applied to the
same problem instances.

The remainder of this paper is structured as follows. The following section provides an
overview of the background to this study in terms of school timetabling, evolutionary
algorithms, hyper-heuristics, and previous work applying hyper-heuristics to the school
timetabling problem. In §3 the logic of GASPHH is described. The experimental setup
used to test GASPHH is presented in §4. In §5 the performance of GASPHH to solve
school timetabling problems is discussed. The findings of this study and future extensions
of this work are summarized in §6.

1Please note that in the context of this study a general solution refers to a method providing a solution
to a particular problem domain by producing solutions specific to each problem instance. It does not mean
that a single solution produced by the method is a solution for a number of problem instances.
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2 Background

This section provides an overview of the school timetabling problem, hyper-heuristics, pre-
vious work applying hyper-heuristics to the school timetabling problem, and evolutionary
algorithm hyper-heuristics.

2.1 The school timetabling problem

The school timetabling problem essentially requires the allocation of resources to timetable
periods, so as to satisfy the problem hard constraints, and minimise the soft constraint
violations [27]. The resources include teachers, venues and classes. In some problems,
venues are not taken into consideration. In order for a timetable to be feasible it must
meet all the hard constraints. The soft constraint cost is usually minimised, and is a
measure of the quality of the timetable.

The hard and soft constraints differ vastly from one school timetabling problem to the
next, and what may be defined as a hard constraint for one problem could be regarded as
a soft constraint for another, and vice versa. Pillay [27] classifies constraints into seven
categories, namely, problem requirements constraints, no clashes constraints, resource uti-
lization constraints, workload constraints, period distribution constraints, preference con-
straints and lesson constraints. Problem requirement constraints are hard constraints that
are defined by the requirements of the problem and have to be satisfied, i.e. a particular
teacher has to meet with a particular class for a specified number of times per week to
present a lesson in a specific subject. The second category, no clashes constraints, is also a
hard constraint which require no resources to be scheduled more than once in a particular
period. Resource utilization constraints are hard constraints which ensure that resources
are not under or over utilized, e.g. the capacity of a venue should not be exceeded, teachers
should not be scheduled when unavailable. Workload constraints are problem dependent,
and are defined as hard constraints for some problems and soft constraints for others. Ex-
amples of this category of constraints include teacher workloads must not be exceeded, a
maximum and minimum limit on the number of lessons a class should have per day. Period
distribution constraints restrict the distribution of periods for classes and/or teachers, e.g.
classes of a certain grade should not have idle or free periods or these should be scheduled
in the last two periods of the school day, only one lesson on a particular subject should
be scheduled per day per class. These constraints have been found to be hard or soft
depending on the problem instance. Preference constraints are soft constraints indicating
teacher or lesson preferences, e.g. Mathematics should be scheduled early in the school
day, teachers may have a preference not to teach in certain periods. The last category of
constraints, lesson constraints, are hard constraints that pertain to certain requirements
that must be met for a specific lesson, e.g. certain lessons should take place simultaneously
or in succession, splitting and merging of classes for certain lessons.

There has been much research into solving various school timetabling problems. This has
been specific to a particular school timetabling problem, e.g. the Greek or German school
timetabling problem which has been defined based on the educational system of the par-
ticular country. Solving the school timetabling problem involves assigning class-teacher
or class-teacher-venue tuples to timetable periods. Each tuple represents a lesson given
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to a class by a teacher on a particular subject. If a teacher has to meet a class for a
lesson on a subject x times a week, x tuples have to be allocated to the timetable. Tuples
are chosen for allocation either randomly or according to the difficulty of allocating the
tuple. A low-level construction heuristic is used to calculate the difficulty of scheduling a
tuple. The two construction heuristics generally used for the school timetabling problem
are the number of lessons per tuple and the number of available timetable periods the
tuple can be allocated to [27]. These heuristics are synonymous to the graph colouring
heuristics largest degree and saturation degree respectively [30]. Methods that have been
applied in the various studies to allocate tuples or improve the feasibility and/or quality of
a timetable created using one of the low-level heuristics include bee algorithms, constraint
programming, constraint satisfaction methods, cyclic transfers, evolutionary algorithms,
GRASP, integer programming, neural networks, simulated annealing, tabu search, thresh-
old acceptance methods, tiling algorithms, the walk up jump down algorithm, as well as
various hybrid approaches [27], and more recently particle swarm optimisation [36, 37].
However, in a majority of these studies a particular method has been applied to a spe-
cific problem without any focus on generalization and evaluation on more than one school
timetabling problem type.

2.2 Hyper-heuristics

Hyper-heuristics are “heuristics” to select or generate low-level heuristics and aim to pro-
vide a more generalized solution for a problem domain. The low-level heuristics can be
constructive or perturbative. Construction heuristics are used to construct a solution to
a combinatorial optimisation problem, while perturbative heuristics are used to improve
an initial potential solution which is usually created using a construction heuristic. The
two types of low-level heuristics are best illustrated with an example from the domain of
examination timetabling. Construction heuristics generally used to create an examination
timetable are graph colouring heuristics, namely, largest degree, largest weighted degree,
largest colour degree, largest enrolment and saturation degree [30]. These heuristics are
an estimate of the difficulty of scheduling an examination. Examinations to be scheduled
are usually sorted according to one of these heuristics and allocated in order to create a
timetable. Perturbative low-level heuristics are moves or operators that will be applied to
the initially created timetable to improve feasibility and/or quality and include swapping
of exams, swapping of rows or columns in a timetable, de-allocating exams and allocating
unscheduled examinations.

Burke et al. [12] define four categories of hyper-heuristics, i.e. selection constructive, selec-
tion perturbative, generation constructive and generation perturbative. Selection hyper-
heuristics choose the construction heuristic to apply during each step of the construction of
a solution, or which perturbative heuristic to apply next during each stage of improvement.
Methods used by selection constructive hyper-heuristics to choose construction heuristics
include hill-climbing, genetic algorithms, tabu search, iterated local search, variable neigh-
bourhood search, fuzzy logic, case-based reasoning, classifier systems and messy genetic
algorithms [10]. Burke et al. [10] describe selection perturbative hyper-heuristics as being
single point search based or population based. The former attempts to improve a single
candidate solution on each iteration. This is achieved by means of two processes, namely



Genetic algorithm selection perturbative hyper-heuristic for the school timetabling problem 43

heuristic selection and move acceptance. Various methods have been used for both these
processes. Burke et al. [10] categorize heuristic selection methods into those with learning
and those without. Heuristic selection without learning essentially refers to variations of
randomly selecting the low-level perturbative heuristic to apply next, while methods with
learning include the choice function and variations of reinforcement learning. Techniques
generally used for move acceptance are defined as deterministic or non-deterministic. De-
terministic move acceptance methods either accept all moves or select moves resulting
in equal and/or improved cost; while methods for non-deterministic acceptance include
Monte Carlo, great deluge, tabu search, simulated annealing and late acceptance [10]. Pop-
ulation based selection pertubative heuristics do not use separate techniques for heuristic
selection and move acceptance and both are achieved by the population based method.
Population based techniques employed by selection perturbative hyper-heuristics are ge-
netic algorithms and ant colony optimisation. Generation hyper-heuristics, on the other
hand, generate a low-level heuristic using existing heuristics and/or problem character-
istics. Genetic programming has chiefly been used for this purpose [10]. Essentially
genetic programming produces a new low-level heuristic which is constructive (generation
constructive hyper-heuristics) or perturbative (generation perturbative hyper-heuristics).
The generated low-level heuristic may be disposable or reusable. Disposable heuristics
are created for a particular problem instance, while reusable heuristics are created offline
and can be applied to a set of problem instances; however, there is no guarantee that the
heuristic will perform well on new instances of the problem.

The availability of the HyFlex architecture [9] has contributed to the advancement of
selection perturbative hyper-heuristics. HyFlex works at a higher level of abstraction and
is domain independent. HyFlex should be able to solve a new instance of a problem
given a different set of low-level perturbative heuristics and evaluation function. Low-
level perturbative heuristics for 6 combinatorial optimisation domains, namely, maximum
satisfiability, one dimensional bin-packing, permutation flow shop, personnel scheduling,
travelling salesman and vehicle routing are available for use with HyFlex. This enables
researchers using HyFlex to concentrate on developing domain independent methods for
heuristic selection and move acceptance. The low-level heuristics available in HyFlex are
divided into four groups, namely mutational, ruin and create, hill-climbing/local search
and crossover heuristics. HyFlex allows for generalization within the specific domain and
across all 6 domains [21].

Given the progress made with selection perturbative hyper-heuristics and their effective-
ness in solving combinatorial optimisation problems, this paper will investigate the use
of a selection perturbative hyper-heuristic in solving the school timetabling problem. A
population based method, namely a genetic algorithm, will be used to explore the space
of low-level perturbation heuristics. This will allow for different sets of low-level heuristics
to be used for the different school timetabling problems. The following section provides
an overview of previous work applying hyper-heuristics to the school timetabling problem.

2.3 Hyper-heuristics and the school timetabling problem

Scholarly research on the use of hyper-heuristics to solve the school timetabling problem
appears to be in its infancy. Pillay [22, 23] has employed a selection constructive hyper-
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heuristic to solve the school timetabling problem. The hyper-heuristic was used to induce
a solution to one of the problems in the Abramson benchmark set [35] and that of a
South African primary school. The hyper-heuristic employs an evolutionary algorithm
to explore a space of combinations of low-level construction heuristics, namely largest
degree, saturation degree, double degree and period preference degree. The hyper-heuristic
produced feasible timetables for both problems.

Pillay [24] examines the use of a generation constructive hyper-heuristic to solve the
school timetabling problem. Genetic programming is used to generate low-level construc-
tion heuristics for the school timetabling problems. Each evolved heuristic is a program
combining existing low-level construction heuristics, arithmetic operators and conditional
statements. One or more of the following low-level heuristics are included in each pro-
gram: largest degree, saturation degree, class degree and teacher degree. The evolved
low-level heuristics are disposable. The hyper-heuristic was tested on two problems from
the Abramson benchmark set. The evolved heuristic was found to perform better than
the largest degree and saturation degree heuristics in solving these problems.

2.4 Evolutionary algorithms and hyper-heuristics

From the previous sections it is evident that the two evolutionary algorithms that have
played a significant role in hyper-heuristics are genetic algorithms [16] and genetic pro-
gramming [18]. Both GAs and GP first create an initial population of randomly created
chromosomes or individuals, which are then iteratively refined via the processes of fitness
evaluation, selection and regeneration. A fitness function is used to calculate the fitness
of each individual and is application dependent. Selection methods commonly used are
fitness proportionate selection and tournament selection, which are used to choose par-
ents of successive generations. Crossover, mutation and reproduction are usually used to
create offspring. Genetic algorithms explore a solution space, while genetic programming
searches a space of programs. Genetic algorithms evolve a solution to a problem while
genetic programming evolves a program, which when implemented produces a solution.
Thus, each individual in a GP population is a parse tree representing a program.

Genetic programming is chiefly employed by generation hyper-heuristics [10]. Each pro-
gram in the population represents the algorithm for a constructive or perturbative heuris-
tic. The program is evaluated by using the heuristic to solve the problem in question,
and generally the fitness is a measure of how far the solution produced is from the known
optimum.

Genetic algorithms have been used in selection hyper-heuristics [17, 25, 26, 34] to explore
a space of heuristic combinations. Each chromosome is a string composed of numeric or
alphabetic characters, with each character representing a low-level heuristic. As in the case
of generation hyper-heuristics, the fitness of each chromosome is determined by applying
the chromosome to either creating a solution in the case of selection constructive hyper-
heuristics, or improving a candidate solution for selection perturbative hyper-heuristics.
The cost of the solution or candidate solution is used as a fitness measure. The cost is spe-
cific to the problem domain. For example, in the context of school timetabling this would
be the number of hard and/or soft constraint violations in the constructed or improved
timetable. Genetic algorithm selection perturbative hyper-heuristics can also be viewed as
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a genetic algorithm using an indirect representation as opposed to a direct representation
whereby the GA explores a space of candidate solutions, and genetic operators are applied
directly to these [1].

The following section describes the genetic algorithm selection perturbative hyper-heuristic
implemented to solve the school timetabling problem.

3 Genetic algorithm selection perturbative hyper-heuristic

From literature on the school timetabling problem [5, 6, 15, 20], it is evident that a two-
phased approach, with the first phase focusing on hard constraints and the second phase
on soft constraints, is effective in solving this problem. Thus, this study takes the same
approach with both phases employing the same genetic algorithm selection perturbative
hyper-heuristic, with the low-level heuristics differing for each phase. The GA hyper-
heuristic for both phases explores a space of heuristic combinations represented by strings.
A generational genetic algorithm, illustrated in Algorithm 1, is employed and iteratively
refines an initial population of randomly created strings via the processes of evaluation,
selection and regeneration. These processes are described in the sections that follow. Each
iteration is referred to as a generation, and g generations denote a run. The termination
criterion for Phase 1 is that a feasible solution is found. For Phase 2 a preset number of
maximum generations is used as a termination criterion.

Algorithm 1: Generational genetic algorithm implemented.

1 Create an initial population
2 repeat
3 Evaluate the population assigning a fitness measure to each individual
4 Select parents
5 Apply the genetic operators to selected parents to produce offspring

6 until the termination criterion is met

3.1 Initial population generation

Each chromosome is a string comprised of low-level heuristics. The length of the string is
equal to the total number of class-teacher meetings to be scheduled. The chromosomes in
the initial population have a fixed length but are variable length in successive generations
as a result of the application of the crossover operator. Each chromosome is created
by randomly choosing a low-level heuristic for each position in the chromosome. The
perturbative low-level heuristics used, and initial population generation for each of the
two phases are described below.

3.1.1 Low-level perturbative heuristics

Two factors have played a role in determining the set of low-level perturbative heuristics to
use, namely the categories of low-level heuristics defined for the HyFlex architecture, and
secondly the operators used in previous studies to create or improve school timetables.
The HyFlex architecture includes ruin and create operators. Allocate and deallocate
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operators are included to cater for this. The allocate operator schedules a tuple to a
feasible timetable period. If there is more than one feasible period available, the tuple
is allocated to the period that will result in the lowest soft constraint cost. If a feasible
period cannot be found, the tuple is allocated to a randomly chosen period. If there are no
tuples to allocate this heuristic has no effect. The deallocate operator removes a randomly
chosen tuple from the timetable, and adds it to the list of the tuples to be scheduled. If the
timetable is empty, the deallocate heuristic has no effect. As in the HyFlex architecture
mutational heuristics are also included. From previous research on solving the school
timetabling problem, operations performed to improve a timetable essentially swap the
tuples between periods [8, 15, 20]. Tuples are either randomly chosen, or alternatively
one or both tuples that cause constraint violations are chosen. The mutation low-level
heuristics used in this paper are based on this methodology. In this paper, each timetable
is a matrix with the rows corresponding to periods and the columns to classes. Each cell
contains either a teacher or a teacher-venue tuple if the problem involves venue allocation.
The following mutational heuristics are made available:

� Two violation mutation - Two cells in the matrix causing constraint violations are
identified, and the contents of the cells are swapped.

� One violation mutation - The contents of a cell resulting in a constraint violation is
swapped with that of a randomly selected cell.

� Random swap - Two cells are randomly selected and the contents swapped.

� Row swap - The contents of the cells in two randomly selected rows are swapped.

� One violation row swap - The contents of a row containing a tuple causing a violation
is swapped with that of a randomly chosen row.

Each of the mutational heuristics perform s swaps. Only cells in the same column are
swapped, to prevent teachers from being scheduled to teach classes they are not allocated
to teach.

The benefit of incorporating hill-climbing into operators for school timetabling is evident
from previous research in this domain [3, 13, 15, 33].Versions of these mutational heuristics
with hill-climbing are also made available. An approach similar to that taken by Cerderia-
Pena [13] and Rahoual [33] is employed, with the hill-climbing implemented within the
mutation process. While the timetable is being mutated, the currently mutated version is
compared to either the parent or the timetable from the previous swap (if this swap has
improved fitness). If the fitness of the new version is better than the current version, then
the swap is accepted. If the older version has a better fitness then the swap is rejected. A
limit is set on the number of attempts at producing a fitter offspring in order to prevent
premature convergence and long computational times. A value of fifty was found to be
sufficient. Both the mutational heuristics and the mutational heuristics incorporating hill-
climbing have no effect if there have been no tuples allocated to the timetable at the time
of application of the perturbative heuristic. The general algorithm for the mutational
heuristics is shown in Algorithm 2. The Mutate Offspring instruction in lines 6 and 15 of
Algorithm 2 will vary depending on the mutation heuristic being used.

From previous work on the school timetabling problem the use of crossover to improve
timetables produced duplicate or missing tuples which made it necessary to incorporate
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Algorithm 2: General algorithm for mutation heuristics

1 if Hill climbing is used then
2 HillClimbingSteps=0
3 while (ParentFitness < OffspringFitness) AND (HillClimbingSteps < 50) do
4 Offspring = Copy parent
5 for MutLoop = 1 to Swaps do
6 Mutate offspring
7 Calculate offspring fitness
8 if Offspring fitness < Previous offspring fitness then
9 Accept swap

10 else
11 Reject swap

12 HillClimbingSteps++

13 else
14 for MutLoop = 1 to Swaps do
15 Mutate Offspring
16 Evaluate Offspring

repair mechanisms resulting in an additional processing overhead [3, 8, 14, 39]. Thus, it
was decided not to use crossover perturbative heuristics in this study.

3.1.2 Phase 1

Each element of the initial population is created by firstly creating n chromosomes, where
each chromosome is created randomly. ADA3DA4AA34DDDA is an example of a chro-
mosome. An A denotes the allocate heuristic, D deallocate, 3 the mutation heuristic that
swaps the contents of a tuple involved in a constraint violation with that of a randomly
chosen tuple, and 4 the heuristic that swaps the contents of two tuples causing a hard con-
straint violation. The fitness of each chromosome is determined by using the chromosome
to create a timetable. Each timetable is represented as a matrix with the rows representing
periods and the columns classes. Each cell stores the teacher teaching the class during
the period, or the teacher and venue in which the lesson will be held. The tuples to be
allocated are sorted according to difficulty of scheduling the tuple. The saturation degree,
i.e. the number of timetable periods that the tuple can be allocated to which does not
result in hard constraint violations, is used to assess difficulty. A lower value is indicative
of a tuple that is more difficult to schedule, and the tuples are sorted in ascending order
of saturation degree for allocation. Each tuple consists of a class and teacher or a class,
teacher and venue. Each tuple is allocated to a feasible timetable period. If a feasible
period cannot be found, the tuple is allocated to a randomly selected period. If there is
more than one feasible period which the tuple can be scheduled in, the period resulting
in the minimum soft constraint cost is chosen, i.e. the minimum penalty slot. The algo-
rithm for applying the chromosome to create a timetable is illustrated in Algorithm 3.
The chromosome is traversed from left to right and each low-level perturbative heuristic is
applied in sequence. Each chromosome is applied once. The fitness of the chromosome is
the sum of the hard constraints that are violated in the constructed timetable, including
the number of unallocated tuples.
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Algorithm 3: Algorithm used to create a timetable using a chromosome

1 for each character in heuristic string do
2 if character = A then
3 if all tuples are not allocated then
4 Find tuple that is most difficult to allocate (lowest saturation degree)
5 Allocate tuple to timetable
6 Resort unallocated tuple list in order of difficulty

7 else if character = D then
8 if timetable is nonempty then
9 Randomly select tuple from timetable

10 Remove tuple and return to unallocated tuple list

11

12 else if character = 1 or 2 or 3 or 4 or 5 or 6 or 7 then
13 if the hard (or soft) constraint cost 6= 0 then
14 Apply associated mutation operator

15

The chromosome amongst these with the best fitness, i.e. lowest number of hard con-
straint violations, then forms part of the initial population. The number of soft constraint
violations is used to break ties in cases where there is more than one chromosome with
the lowest number of hard constraint violations. If the initial population size is m then
this process is performed m times. It is anticipated that this method would improve the
overall fitness of the initial population, and thus improve the possibility of finding feasi-
ble timetables. If n is 1 the process becomes equivalent to that of the standard initial
population generation employed by genetic algorithms.

Phase 1 is terminated once a feasible solution is found, or a maximum number of genera-
tions has been reached. If a feasible timetable is not found, the run is aborted and deemed
unsuccessful.

3.1.3 Phase 2

The feasible timetable found in Phase 1 is kept in working memory. A population of
chromosomes is created as in Phase 1; however, the set of low-level heuristics are differ-
ent and aimed at minimising the soft constraint cost. Furthermore, each chromosome is
randomly created and the best of n chromosomes is not determined, i.e. n has a value of
1 for Phase 2. Each chromosome is applied to the feasible timetable in working memory
to improve the soft constraint cost of the feasible timetable, without introducing hard
constraint violations. The main aim of the second phase is to evolve a chromosome that
results in the largest reduction in the soft constraint cost of the feasible timetable produced
by the chromosome induced in Phase 1.

3.2 Evaluation and selection

Each chromosome is evaluated by using it to construct (Phase 1) or improve (Phase 2) a
timetable. The fitness of each chromosome is the hard constraint cost of the timetable in
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Phase 1 and the soft constraint cost in Phase 2. The hard constraint violations include un-
allocated tuples, i.e. the number of class-teacher meetings not scheduled for each subject.
Thus, chromosomes that do not schedule all meetings will be penalized.

Tournament selection [18] is used to choose parents which the genetic operators are applied
to. A tournament of t individuals is randomly selected from the population and the fittest
chromosome is returned as a parent.

3.3 Regeneration

Mutation and crossover are used to create the offspring of successive generations. Mu-
tation is applied by randomly choosing a character in the chromosome and replacing it
with a randomly selected character from the set of low-level heuristics. Suppose the fol-
lowing chromosome is chosen as a parent and the underlined character the mutation point
341212AD1A. The 2 will be replaced with a randomly chosen low-level heuristic. For
example, if this is an A, the corresponding offspring will be 341A12AD1A.

The cut and splice crossover operator defined by Goldberg [16] is used and creates offspring
of variable length. Different crossover points are selected in each parent. Each point is
randomly selected. Both parents are crossed over at these points to create two offspring.
Suppose that ADADAAA341 and 21444ADADA have been chosen as parents, with 4 the
crossover point in the first parent and 8 in the second parent. The corresponding offspring
are ADADDA and 21444ADAAAA341.

The percentage of successive generations created using each of the genetic operators is
determined by the application rates set at the beginning of the genetic algorithm run.
The most appropriate application rates to use is problem dependent.

4 School timetabling problem list

GASPHH was tested on five different timetabling problems:

� The Abramson benchmark set

� Two different Greek high school timetabling problems

� A South African primary school timetabling problem

� A South African high school timetabling problem

Each of these problems is described in the following sections. The fitness function for all
problems in Phase 1 is

f(t) =
N∑
x=1

Hx ≥ 0, (1)

where Hx is the number of violations by timetable t for hard constraint x, with N being
the total number of hard constraints. The objective is to minimise f(t) and a feasible
timetable is found if f(t) = 0. The same fitness function is used for all problems. A
chromosome producing a feasible timetable will have a fitness value of zero.
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The formulation of the fitness function to calculate the soft constraint cost in Phase 2 is a
summation of the number of violations for each of the listed soft constraints and is given
by

h(t) =
M∑
y=1

Sy ≥ 0, (2)

where Sy represents the number of soft constraint violations in the timetable for soft
constraint y, with M being the total number of soft constraints. A lower soft constraint
cost indicates a better quality timetable. Therefore the objective is to minimise the soft
constraint cost h(t). This fitness function is used for all problems.

Note that it is not necessary to perform Phase 2 if soft constraints are not defined for the
problem (i.e. all the constraints for the problem are hard constraints).

4.1 Abramson benchmark set

Abramson [2] has made available five artificial timetabling problems. These problems are
hard timetabling problems (hence the acronym hdtt) as all periods must be utilized with
very little or no options for each allocation. The characteristics of the problems are listed
in Table 1. Each school week is comprised of five days, with six periods a day, giving a
total of 30 timetable periods.

Problem Number of teachers Number of venues Number of classes

hdtt4 4 4 4
hdtt5 5 5 5
hdtt6 6 6 6
hdtt7 7 7 7
hdtt8 8 8 8

Table 1: A summary of the characteristics of the artificial school timetabling problems.

All five problems have the following hard constraints:

� All class-teacher-venue tuples must be scheduled the required number of times (H1
1 ).

� No class clashes, i.e. a class must not be scheduled more than once in a period (H1
2 ).

� No teacher clashes, i.e. a teacher must not be scheduled more than once in a period
(H1

3 ).

� No venue clashes, i.e. a venue must not be allocated more than once to a timetable
period (H1

4 ).

4.2 The Greek school timetabling problem

GASPHH was also tested on the Greek school timetabling problems made available by
Valouxis et al. [38] and Beligiannis et al. [7]. The problem presented by Valouxis et al.
involves 15 teachers and 6 classes. There are 35 weekly timetable periods, i.e. 5 days with
7 periods per day. The hard constraints of the Valouxis et al. [38] problem set are:
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� All class-teacher meetings must be scheduled (H2
1 ).

� There must be no class or teacher clashes (H2
2 ).

� Free/idle periods for classes must be scheduled in the last period of the day (H2
3 ).

� Each teacher’s workload limit for a day must not be exceeded (H2
4 ).

� Class-teacher meetings must be uniformly distributed over the school week (H2
5 ).

The problem soft constraints are:

� The number of free periods in the class timetable must be minimised (S2
1).

� Teacher period preferences must be satisfied if possible (S2
2).

Table 2 lists the characteristics of the Greek school timetabling problems made available
by Beligiannis et al. [7]. There are 35 timetable periods per week. The sixth problem
instance has not been used in studies subsequent to the study reported in [7] as it was
found that not all data was available for this instance [36, 37, 40]. Thus, this instance
has not been included in this study. Three of these problems have been included in the
problem set of the third international timetabling competition focusing on high school
timetabling [29].

Problem Number of teachers Number of classes Number of co-teaching/subclass requirements

HS1 11 34 18
HS2 11 35 24
HS3 6 19 0
HS4 7 19 12
HS5 6 18 0
HS7 13 35 20

Table 2: A summary of the characteristics of the Beligiannis problem set.

The hard constraints for the Beligiannis et al. [7] problem set are:

� All class-teacher meetings must be scheduled (H3
1 ).

� There must be no class or teacher clashes (H3
2 ).

� Teachers must not be scheduled to teach when they are not available (H3
3 ).

� Class free/idle periods must be scheduled in the last period of the day (H3
4 ).

� Co-teaching and subclass requirements must be met (H3
5 ).

The problem soft constraints are:

� The number of idle/free periods for teachers must be minimised (S3
1).

� The uniform distribution of free periods for teachers (S3
2).

� The workload for a teacher must be uniformly distributed over the week (S3
3).

� Classes should not be taught the same subject in consecutive periods or more than
once in a day if possible (S3

4).

Note that while the study uses the same data set it includes an additional soft constraint
listed in the first description of the problem in Beligiannis et al. [7] (p. 1267), namely the
second constraint which is not used in previous studies.
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4.3 South African primary school problem (SAPS)

This problem involves 19 teachers, 16 classes and 14 subjects. There are a maximum of
11 weekly timetable periods. However, different grades have a different number of daily
periods ranging from 9 to 11. The hard constraints for the problem are:

� All required class-teacher meetings must be scheduled (H4
1 ).

� There must be no class or teacher clashes (H4
2 ).

� Certain subjects must be taught in specialized venues, e.g. Technology in the com-
puter laboratory (H4

3 ).

� Mathematics must be taught in the mornings – specified in terms of valid periods
(H4

4 ).

� All co-teaching requirements must be met (H4
5 ).

� All double period requirements must be met (H4
6 ).

The problem has one soft constraint, namely, the lessons per class must be uniformly
distributed throughout the school week.

4.4 South African high school problem (SAHS)

The South African high school problem that the GA approach is applied to involves 30
classes, 40 teachers and 44 subjects. The hard constraints for the problem are:

� All required class-teacher meetings must be scheduled (H5
1 ).

� There must be no class or teacher clashes (H5
2 ).

� All sub-class and co-teaching requirements must be met (H5
3 ).

The soft constraints for the problem are:

� Teacher period preferences must be met if possible (S5
1).

� Period preferences for classes must be met if possible (S5
2).

5 Experimental setup

Trials runs were conducted to determine the most appropriate values for the following
genetic parameters:

� Population size – size of the population for each generation.

� Subpopulation size (n) – during Phase 1, each element of the population is created
by first creating n chromosomes and the fittest chromosome forms part of the initial
population.

� Number of generations

� Tournament size

� Number of swaps performed by mutational low-level perturbative heuristics

� Mutation application rate

� Crossover application rate
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Problem Sub- Population Tournament No. of swaps Generations Mutation Crossover
problem size size for mutational application application
size low-level rate rate

heuristics

hdtt4–hdtt8 50 1000 10 200 50 20% 80%
Valouxis 50 1000 10 100 50 20% 80%
HS1–HS7 25 750 15 200 50 20% 80%
SAPS 20 500 10 200 50 20% 80%
SAHS 20 750 10 150 75 20% 80%

Table 3: A summary of the genetic parameter values used for each data set to perform GASPHH.

When testing each parameter value, thirty runs were performed. The most appropriate
values found for each problem are listed in Table 3.

One of the aspects of hyper-heuristics that requires further research is the most appropriate
set of low-level heuristics to use. A set containing too many low-level heuristics will
increase the size of the heuristic space thereby increasing the time taken to reach an
optimal heuristic combination, and a possible degradation in the performance of the hyper-
heuristic. On the other hand, if the low-level heuristics that are needed to make an
improvement are not included, this could result in the hyper-heuristic not being successful.
In this paper, the set of low-level heuristics to use for each problem was empirically
determined by conducting trial runs with elements of the three categories of low-level
heuristics (ruin and create, mutational and hill-climbing) for each phase for each of the
problems. Table 4 lists the sets that were found to be most effective for each of the different
types of school timetabling problem. Please note the heuristics are defined as follows:

� A - Allocate a tuple from the list of tuples sorted according to saturation degree.

� D - Deallocate a tuple from timetable.

� 1 - Swap the contents of two cells involved in constraint violations. No hill-climbing.

� 2 - Swap the contents of two cells involved in constraint violations. No hill-climbing.

� 3 - Swap the contents of one cell involved in a constraint violation and a randomly
chosen cell. Hill-climbing is incorporated in the mutation heuristic.

� 4 - Swap the contents of two cells involved in constraint violations. Hill-climbing is
incorporated in the mutation heuristic.

� 5 - Swap the contents of two randomly chosen cells. Hill-climbing is incorporated in
the mutation heuristic.

� 6 - Swap two randomly chosen rows. Hill-climbing is incorporated in the mutation
heuristic.

� 7 - Swap the contents of a row containing a tuple causing a violation with that of a
randomly chosen row. Hill-climbing is incorporated in the mutation heuristic.

GASPHH was developed using Visual C++ 2010. The random number generator function
available in C++ is used to generate random numbers. A different seed is used for each
run of GASPHH. Simulations (trial and final) were run in the Center for High Performance
Computing2.

2See http://www.chpc.ac.za/index.php/resources/tsessebe-cluster for cluster specifications.

http://www.chpc.ac.za/index.php/resources/tsessebe-cluster
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Problem Phase 1 Phase 2

HDTT4 - HDTT8 A, D, 3, 4 N/A
Valouxis A, D, 3, 4 A, D, 3, 4, 5, 6
HS1 HS7 A, D, 1, 2, 3, 4 A, D, 3, 4, 5, 6
SAPS A, D, 2, 3, 4 A, D, 3 4, 5
SAHS A, D, 1, 2, 3, 4 A, D, 3, 5, 6, 7

Table 4: The low-level heuristic sets for each problem.

Problem Success Computational time Average Best soft Average soft Soft constraint
rate of run producing constraint cost constraint cost standard deviation

best result

HDTT4 100% 10 mins 11 mins - - -
HDTT5 100% 26mins 20mins - - -
HDTT6 100% 60 mins 68 mins - - -
HDTT7 100% 240 mins 235 mins - - -
HDTT8 100% 300 mins 678 mins - - -
Valouxis 100% 120 mins 669 mins 34 34 0
HS1 100% 3 days 3 days 63 77.37 6.51
HS2 100% 600 mins 3 days 66 79 8.12
HS3 100% 3 days 3 days 17 18.47 0.86
HS4 100% 3 days 3 days 43 46.03 1.52
HS5 100% 90 mins 2 days 15 19.3 4.11
HS7 100% 1 day 3 days 98 105.4 4.95
SAPS 93% 1 day 7 days 3 7.61 2.81
SAHS 100% 3 mins 1.5 days 2 2.37 0.56

Table 5: A summary of the computational performance of GASPHH. Experiments were per-

formed in The Center for High Performance Computing.

6 Results and discussion

This section discusses the performance of GASPHH on the five school timetabling problems
listed in Section 4. Thirty runs were performed for each problem instance, with each run
comprising both Phase 1 and Phase 2. In those cases where either the problem instance
did not include soft constraints or a feasible timetable could not be found in Phase 1, only
Phase 1 was performed. In the case of the latter, the run was deemed unsuccessful. Table 5
lists the success rate, runtimes, best soft constraint cost, average soft constraint cost, and
soft constraint cost standard deviation, for each of the problem instances. As indicated in
Table 5, GASPHH was able to find a feasible solution on all thirty runs for all problems
except the Lewitt school timetabling problem. For this problem, feasible timetables were
not produced for two runs, with the best timetable having one hard constraint violation for
the one run and two violations for the other run. This can be attributed to random noise
which is characteristic of stochastic methods such as genetic algorithms. Each heuristic
combination was disposable and specific to each phase of a run as the reusable entity in this
domain is the timetable created using the heuristic combination. As can be anticipated,
the runtimes of GASPHH are higher than that of traditional methods generally applied
to the school timetabling problem as a solution has to be created, and evaluated for each
element of the population for each generation [25].

The performance of GASPHH was compared to other methods applied to the same problem
for each of the five problems. In most cases, the comparison has been empirical as there
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Method HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

BC Unknown 0 0 2 2
SA1

AC Unknown 0.67 2.5 2.5 8.23
BC 0 0 0 0 0

SA2
AC 0 0.3 0.8 1.2 1.9
BC 0 0 3 4 13

TS
AC 0.2 2.2 5.6 10.9 17.2
BC 5 11 19 26 29

GS
AC 8.5 16.2 22.2 30.9 35.4
BC 0 0 0 0 0

NN-T2
AC 0.1 0.5 0.8 1.1 1.4
BC 0 0 0 0 0

NN-T3
AC 0.5 0.5 0.7 1 1.2
BC 0 0 0 0 0

SA3
AC 0 0 0 0 0.4
BC 0 0 0 0 0

GA
AC 0 0 0 1.067 1.733
BC 0 0 0 0 0

GASPHH
AC 0 0 0 0 0

Table 6: A comparison for the Abramson data set, with BC the best number of hard constraint

violations and AC the average number of hard constraint violations. The best results are highlited

in bold.

is insufficient data available for a formal comparison.

The performance of GASPHH was compared to the following methods applied to the
Abramson benchmark set:

� SA1 A simulated annealing method implemented by Abramson et al. [4].

� SA2 A simulated annealing algorithm implemented by Randall [32].

� TS A tabu search employed by Randall [32].

� GS The greedy search method used by Randall [32].

� NN-T2 A neural network employed by Smith et al. [35].

� NN-T3 A second neural network employed by Smith et al. [35].

� SA3 - Simulated annealing with a sequence swap neighbourhood operator [40].

� GA - A genetic algorithm implemented by the authors to evolve school timetables
[31].

The hard constraints for this set of problems are listed in Section 4. The minimum and
average hard constraint costs for each of these methods and GASPHH are listed in Table
6. In both this study and the GA study [31] the average is taken over thirty runs. The
best results are highlighted in bold.

GASPHH has performed well on all five problem instances, producing feasible solutions on
all of the thirty runs. As more data was available for the GA study than the other methods,
it was possible to conduct hypothesis tests to determine the statistical significance of the
result that GASPHH performed better than the GA in solving the five problem instances.
Table 7 lists the success rates for both methods. This result was found to be significant
at the 1% level of significance.
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Problem instance Success rate Success rate

HDTT4 100% 100%
HDTT5 100% 100%
HDTT6 100% 100%
HDTT7 100% 47%
HDTT8 100% 13%

Table 7: A comparison of the GASPHH and GA algorithms’ performance.

Problem GA GASPHH

HS1 96 63
HS2 99 66
HS3 34 17
HS4 59 43
HS5 40 15
HS7 117 98

Table 8: Performance comparison of the number of soft constraint violations for the Beligannis

data set [7] with four soft constraints.

Two studies attempted to solve the Greek school timetabling problem presented by Val-
ouxis et al. [38], namely the constraint programming solution implemented by Valouxis et
al. and the genetic algorithm presented in Raghavjee & Pillay [31]. Feasible timetables
were produced by all three methods. The timetable produced by constraint programming
had 45 soft constraint violations, the GA 35 soft constraint violations and GASPHH 34
violations. The result that GASPHH performs better than the GA was found to be sig-
nificant at the 1% level of significance. Both GASPHH and the GA have obtained a 100%
success rate, however the quality of the timetables produced by GASPHH is better than
the GA, with GASPHH obtaining an average quality of 34 over the thirty runs and the
GA 41.97.

The performance of GASPHH on the instances used by Beligainnis et al. [7] is compared
to that of the genetic algorithm in [31]. Both methods produced feasible timetables for
the 6 problems tested. The soft constraint costs of the best timetable produced by each
method are listed in Table 8.

GASPHH has produced timetables of better quality in terms of constraint violations than
the GA as reported in Table 8. Both GASPHH and the GA have produced feasible
timetables for all thirty runs, but the quality of timetables produced by GASPHH is better
than that of the GA. This was found to be significant at the 1% level of significance.

The implementation of this problem in this study differs from previous work in that it
uses an additional soft constraint which previous studies have not taken into consideration,
namely, uniform distribution of idle/gap periods for teachers. For completeness and to
allow comparison with previous work, GASPHH was applied to the problem with the three
constraints used in other studies and was able to find feasible solutions for all six problems.
Table 9 lists the soft constraint cost of the best timetables produced by GASPHH and
other methods applied to the same problem. The best soft constraint cost is highlighted
in bold. The performance of GASPHH is compared to the evolutionary algorithm im-
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Problem EA[7] PSO [36] SA [40] GASPHH

HS1 70 15 29 60
HS2 76 17 37 66
HS3 20 7 8 17
HS4 41 8 28 43
HS5 10 0 3 15
HS7 109 32 40 83

Table 9: Performance comparison in terms of the number of soft constraint violations for the

Beligannis data set [7] with three soft constraints.

plemented by Beligiannis et al. [7], the particle swarm optimisation method employed by
Tassopoulos et al. [36] and the simulated annealing approach used by Zhang et al. [40] to
solve this problem. Particle swarm optimisation and simulated annealing perform better
than GASPHH on the problem sets, with PSO outperforming all the approaches in solving
these problems with the lowest constraint cost for all six problems.

The timetable used by the South African primary school is induced using a package, and is
then manually changed to meet the hard and soft constraints. The current timetable used
by the school does not meet all the double period requirements while both the GA [31]
and GASPHH have produced feasible timetables. The success rate of the GA over thirty
runs was 60% and GASPHH 93%. Furthermore, the quality of the timetables produced
by GASPHH is better than the GA, and this was found to be significant at the 1% level.

The best timetable produced by the GA for the South African high school timetabling
problem is a feasible timetable and has the same soft constraint cost, namely a cost of 2,
as the timetable currently being used by the school. The soft constraint cost of the best
timetable produced by GASPHH is also 2. However, the success rate of GASPHH over the
thirty runs is 100% and 67% for the GA. The average quality of the timetables produced
by GASPHH is 2.37 and for those produced by the GA 4.5. The better performance of
GASPHH compared to the GA was found to be significant at the 1% level of significance.

GASPHH has performed well on all five school timetabling problems producing the best
results when compared to other methods applied to the same problem instances. Fur-
thermore, GASPHH has been able to generalize over the five different types of school
timetabling problems.

7 Conclusion and future work

The study presented in this paper investigates the use of a selection perturbative hyper-
heuristic in solving the school timetabling problem. A genetic algorithm selection pertur-
bative hyper-heuristic is implemented and tested on five different types of school timetabling
problems. This hyper-heuristic has produced feasible timetables for all problem instances
and has provided a generalized solution to the school timetabling problem, performing
better than other methods applied to the same set of problems. It is interesting to note
that the genetic algorithm hyper-heuristic has performed better than the genetic algorithm
applied directly to the solution space. It is hypothesized that small changes in the heuristic
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space result in larger changes in the solution space than when searching the solution space
directly, thereby facilitating quicker movement through the space and greater exploration
of the solution space indirectly. This will be investigated further as part of future work.
One of the disadvantages of hyper-heuristics is the higher runtimes as a result of having
to construct a solution to evaluate each heuristic combination. This is especially so for
population based methods as a population of heuristic combinations are evaluated over
multiple generations. The use of high performance computing can help reduce the high
runtimes associated with hyper-heuristics. Future work will also investigate the extension
of the selection perturbative hyper-heuristic to educational timetabling in general, i.e. the
hyper-heuristic will generalize over university examination timetabling, university course
timetabling and school timetabling. Formal methods for identifying the appropriate set
of low-level heuristics to be used could also be researched further.
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