
Volume 29 (1), pp. 55–73

http://www.orssa.org.za

ORiON
ISSN 0529-191-X

c©2013

Metaheuristic approaches to order sequencing on a
unidirectional picking line

AP de Villiers∗ J Matthews∗ SE Visagie†

Received: 13 September 2012; Revised: 6 December 2012; Accepted: 7 December 2012

Dedication to Emeritus Professor Theodor Stewart

Theo Stewart is one of the founders of OR in South Africa and has since played a long
and active role in the OR community, both locally and internationally. His legacy in the
South African OR community counts amongst the richest. He has served OR as practitioner,
educator, researcher, president and member of ORSSAs executive committee, founding editor
of ORiON and mentor to numerous students. It is an honour to dedicate this paper to Theo
on his seventieth birthday. Thank you for your contribution. Veels geluk, Theo, mag jy goeie
gesondheid behou en nog baie verjaarsdae vier!

Abstract

In this paper the sequencing of orders on a unidirectional picking line is considered. The aim
of the order sequencing is to minimise the number of cycles travelled by a picker within the
picking line to complete all orders. A tabu search, simulated annealing, genetic algorithm,
generalised extremal optimisation and a random local search are presented as possible solution
approaches. Computational results based on real life data instances are presented for these
metaheuristics and compared to the performance of a lower bound and the solutions used
in practise. The random local search exhibits the best overall solution quality, however,
the generalised extremal optimisation approach delivers comparable results in considerably
shorter computational times.

Key words: Order picking, unidirectional carousels, metaheuristics.

1 Background

In general, order picking systems involves the process of clustering and scheduling customer
requests, assigning stock to locations, releasing pick instructions to the floor, picking the
stock from the locations as well as the disposal of the picked stock [8]. An order picking
system in a distribution centre (DC) operated by Pep Stores LTD (Pep) is considered in
this paper. Pep is a major South African retail company selling predominantly apparel.
Pep has approximately 1 500 retail outlets in five Southern African countries.

∗Departments of Logistics, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
†Corresponding author: Departments of Logistics, University of Stellenbosch, Private Bag X1,

Matieland, 7602, South Africa, email: svisagie@sun.ac.za

55

56 AP de Villiers, J Matthews & SE Visagie

Locations

Locations

Conveyor belt

1
m
2

m m
2

+ 1

Figure 1: A schematic representation of the layout of a picking line containing m locations.

The order picking system considered here functions in waves. A wave is a set of stock
keeping units (SKUs) in conjunction with the set of orders (requests from retail outlets).
Each order may be viewed as a set of requests, for SKUs in a wave, by a single retail outlet.
All the orders in a wave are picked in a single run. All the SKUs in a wave are therefore
completely picked for all orders during a single wave. After completion of a wave, a picking
line is populated with a new set of SKUs before a new wave of picking commences.

A picking line is the configuration of fixed locations around a conveyor belt. SKUs are
placed in these locations for easy access when SKUs are collected for orders. A schematic
representation of a picking line containing m locations is displayed in Figure 1. A SKU
is stored in a single location and only SKUs within the same wave may be placed on the
same picking line. Pickers must travel in a clockwise direction around the conveyor belt
while SKUs are collected.

The Order Sequencing Problem (OSP) that is considered here determines the sequence in
which orders must be picked to minimise the total distance travelled by the pickers during
a single wave of picking. It is assumed that the positions of the SKUs are known, when
orders are sequenced.

Each order consists of a set of SKUs together with the number of units required of each
SKU. A picker must sequentially visit each location that contains a required SKU and
pick the required number of units until all SKUs in that order have been picked. A picker
may only start a new order once all the SKUs of the current order are completely picked.

A popular approach to order picking is to make use of a fast-pick (or forward pick area).
A fast-pick area is a sub-region of the warehouse in which one concentrates high frequency
SKUs (i.e. SKUs with a high demand) within a small physical space [4]. The picking
line cannot, however, be considered as a fast-pick (or forward pick) area as the planning
department in Pep releases a wave as soon as new SKUs have arrived at a DC regardless
of SKU demand and size. In addition, locations on a picking line contain a fixed set of
SKUs for only one wave, while locations in a forward pick area are permanently stocked
with the same SKUs.

The order picking system in the Pep DC cannot be modelled as a typical carousel system
either. Carousel systems in literature are typically bi-directional [21], and the composition

Metaheuristic approaches to order sequencing on a unidirectional picking line 57

of the orders are not known in advance. In the DC considered here, the composition of all
the orders are known before a wave of order picking commences because a wave of picking
only starts once all the requirements for all the branches for the wave’s set of SKUs are
known. This deterministic nature of the orders distinguishes this order picking system
from the carousel systems found in literature.

The remainder of this paper is structured as follows. In the next section an overview of the
OSP is presented followed by an insertion heuristic that is used by all of the metaheuristics
presented in §3 to obtain initial solutions. In §3.2–3.6 five metaheuristic approaches are
presented. The results of the metaheuristics applied to real life data instances follows in
§4 and the paper is concluded in §5.

2 An overwiew of the OSP

The OSP is a variant of an equality generalised travelling salesman problem (E-GTSP) [10].
The E-GTSP is an NP-hard problem and exact solution approaches takes too long to
solve to be considered for practical implementation [14]. Assignment heuristics for this
formulation was presented by De Villiers & Visagie [10], while a tight lower bound for this
problem was presented by Matthews & Visagie [15]. A feasible solution within one pick
cycle of this lower bound can always be calculated.

The following definitions and notation are required to describe the metaheuristics in this
paper. The span of an order is the smallest set of locations that must be passed to complete
the order, given a starting location.

Let Ok be the number of different locations that has to be visited to complete order k. A
span for an order k starting at location i may be represented by Sk = 〈i, eik〉, where i is
the starting location and eik is the closest ending position of order k.

The size of a span is the number of locations that have to be traversed to complete the
order if a starting position is specified. Each order may be assigned one starting point
from all the possible locations within an order. The size of the span for order k starting
at location i may be represented by

|Sik| = |〈i, eik〉| =
{
eik − i if i < eik
m+ eik − i if i ≥ eik,

where m is the total number of locations, i is the starting location of the span and eik is
the ending location of the span. Let the minimum span, Smin

k , be a span of smallest size
of order k. The concept of a preference span is used to simplify the process of solving
the OSP. The preference span(s) of an order are the span(s) of an order which start at a
location containing a required SKU for that order.

Any starting location for an order has a unique span associated with it, since an order
must be completed once it is started. The cut of a location is the number of spans passing
that location. The cut of each location represents a lower bound for the number of cycles
needed to pick a set of spans since it represents the minimum number of times a location
must be passed to complete the picking of all the spans considered. The maximal cut is
the largest cut.

58 AP de Villiers, J Matthews & SE Visagie

Matthews & Visagie [15] showed that the maximal cut represents a lower bound in terms
of the number of cycles travelled for a set of spans. They also provided the subtour
generation heuristic in Algorithm 1, which supplies a feasible solution within one cycle of
the lower bound, when the spans have been identified for each order. By minimising the
maximal cut over all combinations of spans, a lower bound to the OSP may be computed.

Algorithm 1: Subtour generation heuristic [15].

Input : A set of starting positions S and ending positions E .
Output : A set T of subtours that link up all the orders.
while All orders have not been allocated to a subtour do1

Generate a new subtour st with the first available unallocated order;2

Let the current ending position of st be location i;3

if An unallocated order exists which has a starting location corresponding to i+ 1 mod m then4

Add this order to the end of the uncompleted subtour;5

else6

Close the subtour by connecting the last order to the first order;7

The size of the problem may be reduced by only considering the preference spans (as
opposed to all the spans) of an order. When an order is not picked on a preference span
a number of locations are traversed (at the start of the span) that does not contribute to
the picking process in the order, resulting in a longer distance travelled for an order than
is required.

It is easy to show that only preference spans need to be considered when the OSP is solved,
since the subtour generation heuristic will, if necessary, increase the lengths of preference
spans to link up spans while constructing a single tour. The subtour generation heuristic
can effectively alter the starting locations of the orders. However, each order will still
be picked on its selected span. The connectivity between orders may thus be ignored so
that the solution structure changes from a n×n connectivity matrix to a worst case of an
n ×m assignment matrix. The sequencing of orders are performed only after each order
has been awarded a starting location associated with a preference span.

3 Metaheuristic solution approaches

Let C represent the maximal cut for a given SKU configuration, where the preference
spans are awarded to orders in a picking line, and NC be the number of locations with
the maximal cut. Let the solution structure be a vector s of starting locations, where the
kth element sk of the vector s represents the starting location of order k, with respect
to a single preference span of order k. From a given solution s (containing only starting
locations) both C and NC can be calculated.

In the next subsection a greedy heuristic is presented that will be used to generate an
initial starting solution for all the metaheuristics considered. In the following subsections
five different metaheuristic approaches are presented that may be used to solve the OSP.

Metaheuristic approaches to order sequencing on a unidirectional picking line 59

3.1 A greedy maximal cut(s) insertion heuristic

The greedy heuristic in Algorithm 2 may be used to find good starting solutions for the
metaheuristics presented here. It is initialised by iteratively assigning starting locations
to all the orders on a picking line. When a starting location is awarded to an order, the
maximal cut(s) are calculated. The starting location of an order is chosen in an attempt
to minimise the maximal cut and as a secondary objective to minimise the number of
maximal cuts.

Algorithm 2: Greedy maximal cut insertion heuristic.
Input : A set of all the order S. All the preference spans for each order.
Output : A vector s of starting locations awarded to each individual order.
Let C ← 0 and NC ← 0;1

while S 6= ∅ do2

Randomly select an order k such that k ∈ S;3

if the selected order contains a preference span that will not increase the current value of C4

then

Assign that starting location to the kth entry in vector s;5

else6

Select a preference span of order k that results in the lowest value of NC ;7

Update the value of C and NC ;8

S ← S\k;9

3.2 Tabu search

The fundamental principle that distinguishes tabu search from other search techniques,
is that tabu search (TS) incorporates “intelligence.” The tabu search directs an iterative
search in a “good” direction so that the search for the optimal solution is not determined
solely by chance. An initial solution is used as starting solution to the tabu search. The
search space of a TS is the space of all possible solutions that can be considered during
the search. The neighbourhood of the search space is the subset of solutions obtained by
applying a single transformation to the search space of the current solution [12, 13]. A
tabu list is a short-term memory structure which contains the solutions that have been
visited in the recent past to aid the search to move away from previously visited sections
of the search space and thus perform more extensive exploration [11]. The TS repeatedly
replaces the current solution by selecting the solution with the best objective function in
the neighbourhood of the current solution, that is not in the tabu list.

For the OSP considered here, a number of situations may arise where improvements may
be achieved by altering an existing solution, when selecting different preference spans of
orders. Orders that pass the maximal cut(s) but do not pick from that/those locations
are considered for alterations (moves) to improve a current solution. If the maximal cut
is determined by one location only (see Figure 2), an alteration to a span may result in a
reduction of the maximal cut. However, if the maximal cut is determined by more than
one location (see Figure 3), alterations are considered to reduce the number of locations
effecting the maximal cut. If the number of locations effecting the maximal cut can be
reduced to one, an alteration that reduces the maximal cut may be attempted. This results

60 AP de Villiers, J Matthews & SE Visagie

in two types of alterations (or moves) namely a reducing move (Figure 2) and a shifting
move (Figure 3).

i− 1 i i+ 1i− 2 i+ 2

Order 3

Order 2

Order 1

Locations

321 2 1Cut

i− 1 i i+ 1i− 2 i+ 2

Order 3

Order 2

Order 1

Locations

2 2 2 2 2Cut

(a) Initial preference spans before
a reducing move

(b) Preference spans after a reducing move
was performed by altering the span

of order 3.

Figure 2: An example of a reducing move, i.e. the altering of the span of an order to reduce

the maximal cut. A filled square represents a location containing a SKU that is required by that

order.

Consider the example in Figure 2(a) where three orders are shown. Order 3 starts at
location i− 1 and ends at location i+ 1. It requires the SKUs in locations i− 1 and i+ 1,
but not any SKU in location i. Order 3 thus passes location i without picking from it.
By altering the preference span of order 3 to start at location i + 1, the maximal cut is
reduced by 1. This reassigning of a preference span to reduce the maximal cut is referred
to as a reducing move. Figure 2(b) displays the spans after the preference span of order 3
was altered.

If no improvement is possible, by altering preference spans of the orders to minimise the
maximal cut(s), an attempt is made to change the location(s) containing the maximal
cut(s). Figure 3(a) displays a situation in which the maximal cut cannot be reduced. It is,
however, possible to alter the location(s) containing the maximal cut(s). The preference
span of order 4 may be reassigned to start at location i+ 1. Before the alteration, loca-
tions i − 1 and i contained the maximal cut and after the change location i+ 2 contains
the only maximal cut. This move may be referred to as an shifting move. Figure 3(b)
displays the spans after order 4 was altered.

If no improvement is possible, by altering preference spans of the orders to minimise the
maximal cut(s), an attempt is made to change the location(s) containing the maximal
cut(s). Figure 3(a) displays a situation in which the maximal cut cannot be reduced. It is,
however, possible to alter the location(s) containing the maximal cut(s). The preference
span of order 4 may be reassigned to start at location i+ 1. Before the alteration, loca-
tions i − 1 and i contained the maximal cut and after the change location i+ 2 contains
the only maximal cut. This move may be referred to as an shifting move. Figure 3(b)
displays the spans after order 4 was altered.

The locations containing a cut of one less than the maximal cut must also be examined.
Figure 4(a) displays a situation which may seem similar to the situation in Figure 2. The
current maximal cut is at location i− 1. Orders 1 and 2 have to pick from location i− 1,
while order 4 does not require a SKU from location i − 1. It may seem beneficial to
alter the preference span of order 4 by starting at location i and ending at location i− 2,
decreasing the cut at location i− 1 by one.

Metaheuristic approaches to order sequencing on a unidirectional picking line 61

i− 1 i i+ 1i− 2 i+ 2

Order 4

Order 3

Order 2

Order 1

Cut

Locations

332 22

i− 1 i i+ 1i− 2 i+ 2

Order 4

Order 3

Order 2

Order 1

Cut

Locations

2 2 2 2 3

(a) Initial preference spans before
a shifting move

(b) Preference spans after a reducing move
was performed by altering the span

of order 4.

Figure 3: An example of a shift move i.e. altering the span of an order to shift the maximal

cut. A filled square represents a location containing a SKU that is required by that order.

i− 1 i i+ 1i− 2 i+ 2

Order 4

Order 3

Order 2

Order 1

Cut

Locations

2232 2

i− 1 i i+ 1i− 2 i+ 2

Order 4

Order 3

Order 2

Order 1

Cut

Locations

22 332

(a) Initial preference spans before
a reducing move

(b) Preference spans after a reducing move
was performed by altering the span

of order 4.

Figure 4: An example of altering the span of an order to create new maximal cuts. A filled

square represents a location containing a SKU that is required by that order.

Notice that locations i + 1 and i + 2 both contain a cut of 2, one less than the current
maximal cut. Figure 4(b) displays the configuration when the preference span of order 4
is altered. Although an attempt was made to decrease the maximal cut, the number of
maximal cuts have increased from one to two. These situations are not considered as
shifting moves.

The greedy heuristic in Algorithm 2 is utilized to obtain an initial solution. The TS is
implemented by including all possible reducing moves in the neighbourhood. If the neigh-
bourhood is not empty, any one of these starting locations is selected (as any one results
in the same reduction in the maximal cut). The starting location of the corresponding
order is updated and that order becomes tabu for a number of predetermined iterations.

If the neighbourhood is empty, it is increased to include all the starting locations of orders
that do not increase the maximal cut(s) but shifts the number of maximal cuts. The
neighbourhood is thus increased to contain all shifting moves. A single starting location
is then randomly selected which shifts the maximal cut(s). The order corresponding to
the starting location then becomes tabu. If no such starting location exists, the algorithm
is terminated and the subtour generation heuristic is used to find a feasible tour with the
current starting locations of the tabu search. Algorithm 3 contains the outline of the tabu

62 AP de Villiers, J Matthews & SE Visagie

Algorithm 3: Tabu search.
Input : A set of all the order S, all the preference spans for each order considered and, a tabu

list length `, the termination number t and two boolean variables ReducingMove and
ShiftingMove.

Output : A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy insertion heuristic in Algorithm 2;1

Calculate the values of C and NC ;2

Create a tabu list L such that |L| = `;3

repeat4

ReducingMove ← false;5

ShiftingMove ← false;6

repeat7

Select an order k to be examined at random such that k ∈ S;8

if order k contains a preference span that will not increase the current value of C then9

ReducingMove ← true;10

Alter the preference span (i.e. starting location) of order k;11

until all orders k ∈ S has been examined or ReducingMove is true ;12

if ReducingMove is false then13

repeat14

Select an order k to be examined at random such that k ∈ S;15

if order k contains a preference span that results in the lowest value of N∗C16

(N∗C ≤ NC) then
ShiftingMove ← true;17

Alter the preference span (i.e. starting location) of order k;18

until all orders k ∈ S has been examined or ShiftingMove is true ;19

Update the value of C and NC ;20

Update the tabu list L and set L ← L ∪ k;21

until no improvement in t iterations or ReducingMove ← false and ShiftingMove ← false ;22

search implementation used in this paper.

3.3 Random local search

Following the neighbourhood structure of the TS a random local search (RLS) is intro-
duced. The algorithm initially proceeds in the same fashion as the TS. However, the moves
that are considered are those that have preference spans which reduce either C or NC .
If no such move can be found the search space is increased to include all the orders. A
random order is then selected and a random preference span assigned to it. After such a
random move, only orders that affect C and NC are considered again. The RLS will stop
once a predetermined number of consecutive random moves are made. The RLS algorithm
is summarised in Algorithm 4.

3.4 Simulated annealing

The simulated annealing algorithm (SA) is based on the analogy between the simulation
of the annealing of solids and the problem of solving large combinatorial optimisation
problems [20]. Annealing is the process of physically heating a solid material to impart
high energy to it. At a high temperature, the solid becomes a liquid. The particles of the
solid randomly arrange themselves in the liquid phase. A cooling phase follows where the

Metaheuristic approaches to order sequencing on a unidirectional picking line 63

Algorithm 4: Random local search.
Input : A set of all the orders S, all the preference spans for each order and a maximum

number of random moves R.
Output : A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy insertion heuristic in Algorithm 2;1

Calculate the values of C and NC ;2

repeat3

if An order k contains a preference span that will decrease the current value of C then4

Alter the preference span (i.e. starting location) of order k;5

r ← 0;6

else if An order k contains a preference span that will decrease the current value of NC then7

Alter the preference span (i.e. starting location) of order k;8

r ← 0;9

else10

Increase the search space to include all orders;11

Select a random order k and a random preference span for order k;12

Alter the preference span (i.e. starting location) of order k;13

r = r + 1;14

Update the value of C and NC ;15

until r ≥ R or no reducing or shifting move is possible ;16

temperature is slowly decreased. By decreasing the temperature in a controlled manner
the particle settle in a crystalised solid state at a minimum energy configuration.

In the annealing process, when thermodynamic balance is reached at a given temperature,
the relative probability of a physical system to have an energy E in a multi-state system in

thermodynamic equilibrium is preportional to the Boltzmann factor of exp
(
−E
kBT

)
, where

kB denotes the Boltzmann constant and T denotes the temperature [1].

The Metropolis algorithm is used to enable the system (solid) to reach a thermal equilib-
rium whenever the temperature is lowered. Given the structure of the system (the current
layout/state of the components of the solid), the system is subject to an alteration (by
exchanging components of this solid). If this alteration improves the objective function
(advancing to a thermal equilibrium) of the system, it is accepted. If the alteration reduces
the solution quality by ∆E of the objective function, it may be accepted with a proba-
bility of exp

(−∆E
T

)
. Following this criterion the system eventually evolves into a thermal

equilibrium at the temperature considered — this leads to a Boltzmann distribution of
energy states [1, 11, 20].

The annealing process may be terminated when the system is solidified (the temperature
reaches 0 or no moves are able to improve the solution quality). The system may also
be reheated, essentially applying the annealing process again if the solidified state of the
current system is not desirable.

The choice of valueing the exchange of starting locations is measured by a combination of
the maximal cut and the number of locations containing the maximal cut. The energy Ex
for a given state x is

Ex = Cx +
Nx
C

m
, (1)

64 AP de Villiers, J Matthews & SE Visagie

where Cx denotes the maximal cut, Nx
C denotes the number of locations containing the

maximal cut for a given state x and m is the total number of locations in the picking line.

The initial temperature T0 is calculated by assigning a random starting location to each
order. A total of 100 alterations are made at random calculating the average, ∆E, of the
corresponding ∆E variations. The initial rate of acceptance τ0 that is associated with
the quality of the initial configuration must be selected. According to Dréo et al. [11]
poor quality solutions are considered if τ0 = 0.5 (starting at a higher temperature), while
better quality solutions are considered when τ0 = 0.2 (starting at a lower temperature).
The value of T0 is deduced from the relation

exp

(−∆E

T0

)
= τ0. (2)

The Metropolis acceptance rule is used to address exchanges that decreases the solution
quality. If ∆E > 0, a number r ∈ [0, 1] is randomly generated. The exchange is accepted
if r < exp

(−∆E+α
T

)
, where T indicates the current temperature, and α is the current

number of iterations at a given temperature. The Metropolis rule is adapted in this way,
since the greedy insertion heuristic in Algorithm 2 serves as a good general starting point
and few moves are able to improve the solution quality. If too many moves are selected
that do not improve the solution quality, the algorithm tends towards a random search.

Algorithm 5: Simulated annealing.
Input : A set of all the order S, all the preference spans for each order considered and the

number of orders to be altered during each iteration ` and the value of τ0.
Output : A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy insertion heuristic in Algorithm 2;1

Calculate the values of C and NC ;2

Evaluate ∆E;3

Calculate T0 according to (2);4

repeat5

Select ` orders at random and an alternative preference span for each order based on (3);6

for i← 0 to ` do7

Use the adapted Metropolis rule of acceptance to possibly alter solution;8

Update the fitness Ex;9

if 100 perturbations attempted then10

Ty+1 = 0.9 · Ty;11

until no improvement is found in 5 iterations or until 100 iterations have been completed ;12

During an iteration a number of orders are randomly selected. The starting locations of
these orders may be altered. An order k requests |Ok| different SKUs resulting in |Ok|
possible starting locations associated with these preference spans. Each of these starting
positions is awarded a probability relative to the minimum span of order k. The score
cik = |Smin

k |/|Sik| is then used to award a probability

pik = cik/
∑
i∈Ok

cik i = 1, 2, . . . , n (3)

for each starting location i of an order k. When an order k is selected for an alteration of

Metaheuristic approaches to order sequencing on a unidirectional picking line 65

its starting location, the probability pik constitutes the probabilty of starting order k on
location i.

A change in temperature occurs at the end of an iteration when either a number of
exchanges are accepted or when a number of exchanges are attempted. The change in
temperature is altered according to the geometric law Ty+1 = 0.9 · Ty. The algorithm is
terminated after 5 successive iterations without an improvement in the solution quality
or after a total of 100 iterations. Algorithm 5 displays the pseudo code for the simulated
annealing process.

3.5 Genetic algorithm

Genetic Algorithms (GAs) are search techniques inspired by the biological evolution of
species in nature [2, 3]. A GA commences with an initial population, where each individual
has a certain fitness level, which measures the level of adaptation to the given objective.
Adaptation is the evolutionary process whereby a population (or individual within the
population) becomes better suited to its habitat [5, 11]. The population gradually evolves
in successive generations due to selection pressure.

An initial population of possible solutions (chromosomes) must be generated. Chromo-
somes may be any solution to the problem and is usually expressed as a binary string. A
chromosome contains genes. The genes are the elements that described the chromosome
in its entirety. The chromosomes are observed and evaluated according to their fitness. A
fitness function specifies the goodness of a solution (chromosome).

All the chromosomes in a population with a good fitness, or even the chromosomes with
weaker fitnesses, are then allowed to create offspring [18]. This process is called the
crossover. This reproduction process generates diversity in the gene pool [17]. The existing
chromosomes breed to create new chromosomes (offspring), which will enter the following
generation.

Mutation is a random change to a chromosome. This is usually used to achieve genetic
diversity. Genetic diversity ensures that the population varies from one generation to
another.

The starting locations of orders are modelled as genes, with a chromosome being a collec-
tion of starting locations for all orders. Initially starting locations for all the orders (genes)
are iteratively awarded to each chromosome according to the heuristic in Algorithm 2. The
sequence in which orders are awarded preference spans according to the heuristic in Algo-
rithm 2 is altered for each chromosome to obtain a distinct range of starting solutions in
an attempt to diversify the gene pool.

The fitness of each chromosome z is calculated as

fz = Cz +
N z
C

m
, (4)

where m is the total number of locations, Cz denotes the maximal cut and N z
C denotes

the number of locations containing the maximal cut for chromosome z.

In this paper three types of crossovers are used to create offspring between two parents.

66 AP de Villiers, J Matthews & SE Visagie

All the chromosomes are allowed to create offspring according to the ranked-based fitness
selection criteria [11].

The first type of crossover consist of a random swop of genes (starting locations of orders)
between two chromosomes and is called the 50/50 crossover. A second type of crossover
is to award a higher probability to one offspring receiving the shorter preference span.
This crossover is referred to as the ranked crossover. When considering two parents, the
probability of swopping two genes, i and j for an order k is determined by generating a
random number r ∈ [0, 1]. If r < |Sik|/(|Sik|+ |S

j
k|) the two starting locations are swopped.

With this rule a higher likelihood exists of creating one offspring containing the majority of
the shorter preference spans and another offspring containing the longer preference spans.
A final crossover is considered where the maximal cut(s) of the first parent are identified,
called the maximal cut traverse crossover. A crossover is only made between two starting
locations if the starting location of an order in the first parent currently crosses all the
current maximal cut(s) associated with the fitness of the first parent.

Elitism is also implemented in the genetic algorithm. The best 2% of the solutions in a
generation will directly enter the next generation. Furthermore, 1% of the best performing
chromosomes during an iteration are selected for a mutation phase, where each gene is
individually examined for any alteration in starting location (preference span) that may
improve the solution quality. During each iteration a total of 30% of the worst performing
chromosomes are replaced with new chromosomes generated by Algorithm 2. Algorithm 6
shows the pseudo code for the implementation of the genetic algorithm.

Algorithm 6: Genetic algorithm.
Input : A set of all the order S, all the preference spans for each order considered and

population size P and the desired crossover approach.
Output : A vector s of starting locations awarded to each individual order.
Find a set of initial solutions by means of the greedy insertion heuristic in Algorithm 2. Calculate1

with the values of Cz and Nz
C for each chromosome z = 1, 2, . . . , P ;

Evaluate fz for each chromosome z = 1, 2, . . . , P ;2

repeat3

Rank the chromosomes in a decreasing manner in terms of their fitness;4

for z ← 0 to P − 1 (with step size 2) do5

Perform a crossover between chromosomes z and z + 1 according to the specified crossover6

approach in the input;
Update the fitness fz and fz+1;7

Sort the chromosomes in decreasing order of fitness;8

Perform mutation on the best 1% of the chromosomes;9

Sort the chromosomes in decreasing order of fitness;10

Perform elitism of the top 2% of chromosomes;11

Replace 30% of the worst performing chromosomes with new solutions by means of the greedy12

insertion heuristic in Algorithm 2;
until no improvement in the fitness is found during 5 iterations ;13

3.6 Extremal optimisation

Extremal optimization (EO) is an optimisation heuristic inspired by the proporty of self-
organized criticality (SOC) from the field of statistical physics [22]. EO is based on the

Metaheuristic approaches to order sequencing on a unidirectional picking line 67

dynamics of non-equilibrium processes and in particular those exhibiting SOC, where
better solutions emerge dynamically without the need for parameter tuning [7]. The
Bak-Sneppens model of co-evolution of species exhibits SOC and was the inspiration for
EO [22].

In contrast to a genetic algorithm which considers the entire gene pool, EO improves
a single candidate solution by considering each component as co-evolving according to
Darwinian principles [6]. Unlike simulated annealing, EO uses a non-equilibrium approach
which requires few parameters that have to be altered. It may be modelled by having a
single parameter, while maintaining competitive, and even superior, results with respect to
elaborate optimisation algorithms [22]. In contrast to simulated annealing, EO takes the
system far from equilibrium as it applies no decision criteria, and all new configurations
are accepted indiscriminately.

A single solution is considered and is examined to determine the contributions of its genes
to the overall fitness. Analogously to the Bak-Sneppens model, each gene gx has its own
fitness contribution λ(gx). The higher the value of λ(gx), the better the contribution.

Instead of always picking the weakest part of g, Boettcher & Percus [6] selected a gene to
be modified randomly in order to ensure that the algorithm does not become stuck in a
local optima. The probability

P (y) ∝ y−τ (5)

is awarded to a gene gx with a fitness rank of yx. The higher the value of τ , the less prone
it is to alter genes that are ranked lower.

The major concern with EO is the manner of determining the fitness contributions λ(hx·gx)
for the elements hx · gx. De Sousa et al. [9] extended EO to the Generalised Extremal Op-
timisation (GEO), by examining each gene in the search space, according to the following
procedure:

1. Determine an initial solution (individual) h with a random gene construction g and
set the current best known solution candidate f∗, i.e. f∗ = h · g.

2. For each gene gx ∈ g:

(a) Toggle the value of each gene gx to retrieve a solution f ′x = h · g′.
(b) Set the change in fitness at ∆fx = f∗ − f ′x.

(c) Return the gene to its original form.

3. Rank the genes in decreasing order in terms of ∆fx for x = 1, 2, . . . , X.

4. Use (5) as mutating probability to determine which gene will be mutated. A random
number r is uniformly generated in the range [0, 1]. If r is smaller than the mutating
probability, the mutation is performed, otherwise the process is repeated until a gene
is found to mutate, that yields a fitness of f ′.

5. If f ′ is better than f∗, set f∗ = h · g′.
6. If the termination criterion has not yet been met, continue at Step 2.

The EO algorithm is implemented for the OSP by considering the starting locations of each
order. Once again, to reduce the size of the problem, only preference spans of orders are
considered. An initial solution to the problem is determined by means of Algorithm 2. This

68 AP de Villiers, J Matthews & SE Visagie

initial solution enables the EO algorithm to reach better solutions in fewer iterations. The
implementation of the EO algorithm is based on the GEO approach used by De Souse et
al. [9]. Each gene (starting location of an order) is considered and “toggled.” An attempt
is made (by toggling the starting location of an order) to find a more suitable starting
location that will benefit the solution quality by considering implications that may arise
as the algorithm progresses.

Before genes are altered, the maximal cut C of the current configuration is determined
together with the number of maximal cuts in the current configuration NC . For each
gene the current starting location is compared to all other starting locations (of preference
spans) of that order. An alternative starting location for an order is identified that may
improve the solution quality or slightly reduce the solution quality based on a number of
considerations.

During an iteration genes that will be considered for alteration are identified. The orders
that do not traverse a maximal cut cannot improve the solution quality. Only genes that
currently traverse maximal cut(s) are considered. Each of these genes gx are awarded with
a change in performance ∆fx, where the current preference span of the corresponding order
gx is compared with all its other preference spans and the best alternative preference span
is identified and becomes the proposed preference span.

Once the change in performance is calculated for each considered gene gx, the genes are
ranked in decreasing order of ∆fx. Each gene gx is awarded a probability of

P (yx) = y−τx , (6)

where yx denotes the rank of gene gx. These probabilities are then normalised to calculate a
probability distribution where a higher likelihood exists of altering a gene that will improve
the solution quality. A random number is used to determine the alteration. When the
alteration is made, the cuts at each location is updated.

Algorithm 7: Generalised extremal optimisation.
Input : All the preference spans for each order considered and a set of all the order S, the value

of τ and the stopping criteria `.
Output : A vector s of starting locations awarded to each individual order.
Find an initial solution s by means of the greedy insertion heuristic in Algorithm 2 and f∗x ;1

repeat2

for x← 0 to n do3

Toggle the value of each gene gx and retrieve the solution f ′x = h · g′;4

Calculate ∆fx;5

Rank the genes in decreasing order of ∆fx for x = 1, 2, . . . , n;6

Use the mutating probability distribution in (6) to determine a gene for mutation;7

if f∗ < f ′ then8

Let f∗ = h · g′ be the new best solution;9

until no improvement in the fitness is found in ` iterations ;10

When an alteration is made with a positive fitness, the solution may remain unchanged. In
some cases the solution quality may even decrease. These situations exist when a picking
line contains multiple maximal cuts. Some maximal cuts are decreased but some are
increased (the GEO algorithm will ensure that more maximal cuts are decreased than the

Metaheuristic approaches to order sequencing on a unidirectional picking line 69

number of maximal cuts increased). Algorithm 7 displays the pseudo code implementation
of the GEO implementation used.

4 Results

All the algorithms were coded in Java [16] and executed on an Intel(R) Core(TM)2 Duo
3GHz with 3.7 GB RAM running Linux Ubuntu [19]. Initial parameter selection were
based on suggestions from literature by Dréo et al. [11]. The parameters for the algorithms
were then improved by means of sensitivity analysis around these suggested values. The
specific parameter values of the algorithms are discussed in the following paragraphs.

The TS was tested by varying the tabu list length at 10%, 20%, 30% and 40% of the
number of orders considered. A second parameter was introduced which terminated the
algorithm if the maximal cut was not reduced after 50, 100 or 200 iterations. The best
results are realised when the tabu list is fixed at 30% of the number of order considered.
Insignificant savings are achieved when the algorithm is terminated at 200 iterations with-
out improvement or 100 iterations without improvement. However, the solution quality
decreases substantially when the termination criteria is set at 50. Thus only 100 itera-
tions without a reduction of the maximal cut is considered, which requires significantly
less computational time.

The SA is implemented by altering the percentage of preference spans during each iteration
at 2%, 5%, 10% and 11%. The value of τ0 is varied at 0.02, 0.05 and 0.1. The best results
are produced when τ0 is equal to 0.02 and when 10% of the preference spans are considered
for alteration during every iteration. Considerable increases in compuational time are
incurred when the number of preference spans that are altered are increased from 5% to
10% and even higher increases are incurred for an increase from 10% to 11%. Neither of
these time increases justify the minor or no increase in solution quality associated with it.

The GA is tested for the three crossover approaches namely the 50/50 crossover, ranked
crossover and the maximal cut traverse crossover. The population size is also varied to be
either 20, 40, 60 or 80. The population is relatively small compared to the number sug-
gested in literature. These parameters are, however, selected since increasing the number
of chromosomes does not yield significant improvements in the solution quality. The best
solutions for the GA are achieved when the number of chromosomes are set to 60 and the
ranked crossover selection rule is used. Solution quality does not differ considerably when
the parameters are altered.

The GEO algorithm is tested by varying the value of τ over 1, 1.25, 1.5 and 1.75. The
stopping criteria is tested for situations where no improvement was found in 100, 200
and 300 iterations. The best results are found for the GEO when τ = 1.5 and when the
stopping criteria is set to 200 iterations without improvement.

Table 1 contains the results for the metaheuristics considered. A total of 22 real life data
sets provided by Pep are considered. Each data set is categorised as either large, medium
or small for reporting purposes. Large data sets have a lower bound in excess of 900
orders, medium data sets require between 40 and 900 cycles when considering the lower
bound, and the rest of the data sets are considered as small data sets. The lower bound

70 AP de Villiers, J Matthews & SE Visagie

900

1 000

1 100

1 200

1 300

A B C D E F G H I J
Data set

C
y
cl

es
tr

av
el

le
d

LB

TS

SA

GA

GEO

RLS

Pep

0

200

400

600

K L M N O P Q
Data set

C
y
cl

es
tr

av
el

le
d

LB

TS

SA

GA

GEO

RLS

Pep

0

20

40

60

80

R S T U V
Data set

C
y
cl

es
tr

av
el

le
d

LB

TS

SA

GA

GEO

RLS

Pep

Figure 5: A bar chart displaying the results (cycles travelled) obtained in Table 1. The number

of cycles travelled for the lower bound (LB), tabu search (TS), simulated annealing (SA), genetic

algorithm (GA), generalised extremal optimisation (GEO) and random local search (RLS) for each

data set are compared to the historical results from Pep.

Metaheuristic approaches to order sequencing on a unidirectional picking line 71

Data Size Lower
set (O, L) bound TS SA GA GEO RLS Pep

A (1 262, 49) 1 232 1 233 1 233 1 233 1 233 1 233 1 301
B (1 264, 54) 1 226 1 226 1 226 1 226 1 226 1 226 1 255
C (1 265, 51) 1 161 1 178 1 168 1 163 1 167 1162 1 254
D (1263, 56) 1 072 1 114 1 089 1 098 1 080 1 086 1 224
E (1 264, 51) 1 069 1 124 1 083 1 085 1 073 1 069 1 234

L
a
rg

e

F (1 258, 55) 1 025 1 062 1 038 1 053 1 040 1 031 1 177
G (1 258, 53) 1 005 1 069 1 042 1 058 1026 1013 1 222
H (1 244, 54) 992 1 049 1 021 1 028 1 008 999 1 242
I (1 260, 56) 955 1 017 988 1 002 977 967 1 227
J (1 264, 56) 947 1 005 982 993 971 955 1202

K (943, 63) 259 293 276 269 263 292 640
L (846, 56) 232 247 241 236 237 234 615
M (728, 51) 152 171 155 154 160 152 457
N (733, 55) 125 134 132 128 128 125 461
O (396, 63) 90 101 93 93 93 90 224M

ed
iu

m

P (574, 48) 80 84 82 82 83 81 324
Q (242, 64) 45 53 45 45 45 46 142

R (158, 55) 14 16 14 14 14 14 82
S (89, 42) 9 10 9 9 9 9 40
T (82, 51) 8 8 8 8 8 8 36

S
m

a
ll

U (90, 48) 7 8 8 8 8 7 40
V (80, 56) 6 6 6 6 7 6 38

Total 11 711 12 208 11 939 11 991 11 856 11 805 15 437

Table 1: The solutions (as number of cycles travelled) for the tabu search (TS), simulated

annealing (SA), genetic algorithm (GA), generalised extremal optimisation (GEO) and random

local search (RLS) for each data set. The historical results from Pep are listed in the last column.

The number of orders (O) and the number of locations (L) are indicated for each data set. The

best solution quality for each data set is indicated in boldface.

is calculated by means of the maximal cut formulation by Matthews & Visagie [15]. The
best performing metaheuristic is the RLS which obtains on average 0.80% more cycles
than the lower bound over all data sets. The GEO approach is in a close second place and
delivers results that is on average within 1.24% of the lower bound. The TS delivers the
worst performance of all the metaheuristics considered and is on average 4.24% from the
lower bound over all the data sets considered.

Table 2 displays the computational times in milliseconds for the results in Table 1. The
TS is the fastest metaheuristic on average over all data sets considered. The TS reaches a
local optimum quickly whereafter no reducing move is found that reduces the maximal cut.
The RLS requires on average the most computational time to solve an instance provided
by Pep. The GEO displays favourable computational times, especially for medium and
small data sets.

Although the RLS provides on average the best quality solutions for the data considered,
the GEO delivers on average competitive solutions with respect to the RLS in much shorter
computational times. Figure 5 displays bar charts of the solution quality for the large,
medium and small data sets, respectively as given in Table 1. For medium and small data

72 AP de Villiers, J Matthews & SE Visagie

Data Size
set (O, L) TS SA GA GEO RLS

A (1 262, 49) 672 5 380 2 547 1 594 6 376
B (1 264, 54) 333 5 625 2 012 1 232 9 931
C (1 265, 51) 273 16 754 6 478 1 308 5 812
D (1 263, 56) 148 24 692 2 312 6 178 17 282
E (1 264, 51) 147 33 093 6 679 2 473 22 290

L
a
rg

e

F (1 258, 55) 173 29 430 2 331 5 075 15 259
G (1 258, 53) 144 27 299 4 497 7 903 25 513
H (1 244, 54) 150 48 500 1 954 11 486 24 188
I (1 260, 56) 169 42 712 2 267 9 584 13 412
J (1 264, 56) 124 26 845 5 490 10 943 10 628

K (943, 63) 89 5 110 1 521 718 1 099
L (846, 56) 57 969 2 339 581 541
M (728, 51) 41 619 414 220 751
N (733, 55) 53 416 812 213 325
O (396, 63) 43 152 381 80 715M

ed
iu

m

P (574, 48) 44 143 888 130 176
Q (242, 64) 21 67 145 35 168

R (158, 55) 11 24 42 27 54
S (89, 42) 9 14 18 10 12
T (82, 51) 7 13 21 8 24

S
m

a
ll

U (90, 48) 7 12 17 9 17
V (80, 56) 8 13 22 10 33

Total 2 723 267 882 43 187 59 817 154 606

Table 2: Computational times in milliseconds for the results in Table 1. The number of orders

(O) and the number of locations (L) are indicated for each data set. The results of the tabu search

(TS), simulated annealing (SA), genetic algorithm (GA), generalised extremal optimisation (GEO)

and random local search (RLS) are dispalyed.

sets, the various approaches deliver approximately the same results, in some cases finding
solutions equal to the lower bound. All the approaches outperforms the number of cycles
travelled by Pep for all the data sets.

5 Conclusion

An order picking system in a DC owned by Pep stores was investigated. The problem was
categorised into three tiers. Metaheuristic approaches are considered to achieve close-to-
optimal solutions in considerably shorter time frames than the approach used by Matthews
& Visagie [15] and better solution quality than the algorithms presented by De Villiers &
Visagie [10]. A greedy heuristic is used to obtain a good initial solution for all the meta-
heuristics considered. A tabu search, simulated annealing, genetic algorithm, extremal
optimisation approach and a random local seacrh were developed to solve the OSP. The
random local search delivers the best results, while the tabu search was able to solve each
instance considered in the shortest time frame, but the method that produces the best
solution quality relative to solution times is the GEO approach.

Metaheuristic approaches to order sequencing on a unidirectional picking line 73

References

[1] Aarts E & Korst J, 1990, Simulated annealing and Boltzmann machines: A stochastic approach to
combinatorial optimization and neural computing, John Wiley & Sons, New York (NY).

[2] Alba E, Blum C & Roli A, 2005, An introduction to metaheuristic techniques, pp. 3–42 in Parallel
metaheuristics: A new class of algorithms, John Wiley & Sons, Hoboken (NJ).

[3] Bäck T & Hoffmeister F, 1991, Extended selection mechanisms in genetic algorithms, Proceedings
of the Fourth International Conference on Genetic Algorithms, San Mateo (CA), pp. 710–719.

[4] Bartholdi JJ, Hackman ST, 2010, Warehouse & distribution science, Release 0.92, [Online], [Cited
March 24th, 2010], Available from http://www.tsp.gatech.edu/problem/index.html.

[5] Blum C & Roli A, 2003, Metaheuristics in combinatorial optimization: Overview and conceptual
comparison, ACM Computing Surveys, 35(3), pp. 268–308.

[6] Boettcher S & Percus AG, 1999, Extremal optimization: Methods derived from co-evolution,
Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco (CA).

[7] Boettcher S & Percus AG, 2001, Extremal optimization for graph partitioning , Physical Review
E, 64(2), pp. 1–13.

[8] De Koster R, Le-Duc T & Roodbergen K J, 2007, Design and control of warehouse order picking:
A literature review, European Journal of Operations Research, 182(2), pp. 481–501.

[9] De Sousa FL, Vlassov V & Ramos FM, 2004, Generalized extremal optimization: An applicationin
heat pipe design, Applied Mathematical Modelling, 28(10), pp. 911–931.

[10] De Villiers AP & Visagie SE, 2011, Toewysingsheuristieke om die volgorde van bestellings vir ’n
uitsoeklyn te bepaal, LitNet Akademies (Natuurwetenskappe), 9(1), pp. 1–22.

[11] Dréo J, Pétrowski A, Siarry P & Taillard E, 2006, Metaheuristics for hard optimisation:
Methods and case studies, Springer-Verlag, Berlin.

[12] Glover F, 1986, Future paths for integer programming and links to artificial intelligence, Computers
and Operations Research, 13(5), pp. 533–549.

[13] Glover F, 1990, Tabu search — Part II, Operations Research Society of America, 2(1), pp. 4–32.

[14] Gutin G & Yeo A, 2003, Assignment problem based algorithms are impractical for the generalized
TSP, Australasian Journal of Combinatorics, 27(1), pp. 149–153.

[15] Matthews J & Visagie SE, 2011, Order sequencing on a unidirectional cyclical picking line, [Sub-
mitted].

[16] Sun Mircosystems, Java, [Online], [Cited March 26th, 2010], Available from http://java.sun.com.

[17] Patnaik LM, 1994, Genetic algorithms: A survey, Computer, 27(6), pp. 17–26.

[18] Qi X, 1994, Theoretical analysis of evolutionary algorithms with an infinite population size in contin-
uous space part I: Basic properties of selection and mutation, IEEE Transactions of Neural Networks,
5(1), pp. 102–119.

[19] Ubuntu, [Online], [Cited March 15th, 2011], Available from http://www.ubuntu.com.

[20] Van Laarhoven PJM & Aart EHL, 1988, Simulated annealing: Theory and applications, D. Reidel
Publishing Company, Dordrecht.

[21] Vickson RG & Fujimoto A, 1996, Optimal storage locations in a carousel storage and retrieval
system, Location Science, 4(4), pp. 237–245.

[22] Wiese T, 2011, Global optimization algorithms: Theory and application, 2nd Edition, [Online], [Cited
May 31st, 2011], Available from http://www.it-weise.de/.

