
Volume 30 (2), pp. 73–83

http://orion.journals.ac.za

ORiON
ISSN 0529-191-X

c©2014

Efficient waste reduction algorithms
based on alternative underestimates for the

modified Wang method

JA Oberholzer∗ JM Hattingh† T Steyn‡

Received: 26 November 2012; Revised: 7 August 2013; Accepted: 15 January 2013

Abstract

This paper is concerned with wastage reduction in constrained two-dimensional guillotine-
cut cutting stock problems, often called trim loss problems. A number of researchers report
in the literature on algorithmic approaches to find exact solutions for the trim loss problem.
Alternative heuristic functions are investigated and applied to the modified Wang method.
This involves the sharpening of underestimates used in the methods heuristic function. Two
aspects of these solution approaches are considered and some empirical results are given. The
first part considers the feasibility to construct more informed heuristic functions. The second
part investigates the role of more informedness on the computational cost of these search
processes.
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1 Introduction

The constrained two-dimensional guillotine-cut cutting stock (C2DGC) problem is con-
sidered here. An algorithm is introduced that is based on the algorithms proposed by
Wang [10] denoted by WA and a modified WA-algorithm by Oliveira and Ferreira [8]
denoted by WAM in this paper. These algorithms still form the core of exact trim loss
algorithms.
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The WA method exploits a way of building larger rectangles by joining smaller ones.
Wang proposed two algorithms based on this method to solve C2DGC problems. Using
this bottom-up rectangle building approach, larger rectangles are gradually generated
from the rectangles and rotated versions of the rectangles. They also distinguish between
“horizontal” and “vertical” builds in the building process. Every newly generated rectangle
may contain trim loss. This trim loss is called internal trim loss for the build. Further trim
loss can in general be expected if this build is subsequently combined with other rectangles
to form a larger build and the process can be repeated until no further expansion can take
place as limited by the dimensions of the stock sheet. Such a build is called a maximal
build. The unused part of the stock sheet (if any) also contributes to trim loss. We refer
to the latter trim loss as external trim loss. Pertaining to this maximal build the total
trim loss of the stock sheet is thus the sum of the internal trim loss for the build and the
external trim loss associated with the build.

The WAM algorithm employs techniques of Gilmore and Gomory [4] to (under)estimate
the expected total trim loss associated with a build. In the first part of this paper some
ideas are investigated to sharpen these (under)estimates to possibly reduce the search
space by means of more informed heuristics. The typical search framework is employed
where the evaluation function (of a node to be considered in the search) consists of the
sum of a cost function and a heuristic function. The evaluation function in this case
consists of the “cost” of a build (internal trim loss) plus a heuristic (under)estimate of
further “costs” (trim loss external to the build). Some empirical results are given. In
the second part of the paper the results are interpreted in the sense that the trade-off is
considered between the benefits of informedness and the higher computational cost of the
more complex control strategies of the search.

The remainder of the paper is structured as follows. In §2, the problem is presented
and current algorithmic approaches used to solve the problem, are discussed. In §3 an
algorithm to solve some larger, industry-sized real life problem instances are presented
and §4 contains an example illustrating some of these concepts. In §5 empirical tests and
results are shown where the effectiveness of the algorithmic approaches is evaluated.

2 Problem representation and algorithmic approaches

The C2DGC problem may be defined as follows. Let S be a stock sheet of length L ∈ I+

and width W ∈ I+ where L ≥ W , and let R be a set of demand rectangles. These
rectangles have types ri (i = 1, . . . , n), where each type has a demand constraint of
bi ∈ I+, a length of `i ∈ I+ and a width of wi ∈ I+. Since rotation is allowed in this
model, it is assumed that there is a demand constraint bi concerning the maximal number
of rectangles of a certain type ri to be produced taking equivalence regarding rotation into
account. A guillotine cutting pattern with minimum trim loss must thus be determined
that produces no more than bi replicates of rectangle type ri.

The WA-algorithm [10] given in Algorithm 1 terminates with an optimal (exact) solution
to the C2DGC problem. Note that when the WA-algorithm returns to Step 1(b) (from
Step 4) with an increased β value, it discards all previous builds and information. Note
also that the WA-algorithm considers storage of a rectangle in Step 2 (a)(ii) using only
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internal trim loss.

Algorithm 1: WA-Algorithm

1. (a) Choose a value of β, 0 ≤ β < 1 and an increment δ > 0. Typically choose δ close to zero,
for instance δ = 0.01.

(b) Set L(0) = R and set k = 1.

2. (a) Compute F (k) as the set of all rectangles T satisfying:

i. T results from a feasible horizontal or vertical build of two rectangles from L(k−1).
ii. The internal trim loss of T does not exceed β · L ·W .

iii. T does not violate the demand of constraints b1, . . . , bn.

(b) Set L(k) = L(k−1) ∪ F (k).

3. If L(k) 6= L(k−1), set k ← k + 1 and go to Step 2.

4. For each maximal build of L(k) compute the total trim loss and select the build with the
smallest total trim loss. If it is less than or equal to β · L ·W , it is optimal and the algorithm
terminates. Otherwise, increase β by δ and go to Step 1(b).

In Oliveira and Ferreira [8] the same representation and building process as the WA method
is used with the main difference that the requirement in Step 2 (a)(ii) is changed. They
require that the internal trim loss of T plus an underestimate of further trim loss incurred
by expanding builds based on T should not exceed β ·L ·W . The underestimate of Oliveira
and Ferreira is based on the solution of a two-dimensional knapsack function as described
by Gilmore and Gomory [4]. Daza et al. [3] propose a different way of calculating the
underestimates that is motivated by the desire to find a monotone and admissible heuristic
for the search procedure.

Neither Oliveira and Ferreira or Daza et al. discuss the possible re-use of previous build
information in the design of the algorithms. In this paper the use of build information to
produce sharper underestimates is considered.

3 Algorithms based on alternative heuristic functions

The WAM-algorithm [8] employs at every coordinate of a lookup table (as used in their
evaluation function to identify builds that should be stored) underestimates of further
waste using the underestimates produced by solving an unbounded two-dimensional knap-
sack function. In this section a procedure is explored that can be used to produce un-
derestimates either by superimposing it on the estimates provided by the Gilmore and
Gomory method [4] or using it in a standalone fashion using other easily obtained under-
estimates. These algorithms are based on the information obtained by the application of
the WA-algorithm to a portion of the stock sheet and generating underestimates as part
of the process. The details of the proposed PSSP-algorithm (partial stock sheet propaga-
tion algorithm) are given in Algorithm 2. The PSSP-algorithm is given as an example of
methods that can be employed to improve the informedness of heuristic underestimates
like that of Gilmore and Gomory.

In this paper the following four approaches are considered although there may be others
that can be devised:
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Algorithm 2: The PSSP-algorithm

1. Choose a value of β, 0 ≤ β < 1 and a value for δ. (Normally close to zero).

2. Initialize an array A with dimensions W and L by using underestimates of waste at every
coordinate. Specifically the unbounded two-dimensional knapsack function of Gilmore and
Gomory [4] can be used. Fill each cell of A with the value obtained. Note that any legitimate
underestimates will also suffice (like underestimates of zero).

3. Choose S such that 0 < S ≤ 1 (§5 discusses possible choices).

4. Consider the partial stock sheet with dimensions bS ·W c and L. Apply the WA-algorithm to
the “stock sheet” with the current β-value. When Step 4 of the WA-algorithm is reached (for
the first time) L(k) has elements containing internal waste that correspond to certain cells(x, y).

Designate these as waste(L
(k)
i , x, y) where L

(k)
i is the ith with dimensions x, y.

5. Initialize array B as follows:
If no waste(L

(k)
i , 1, 1) in the list exists, define waste(L

(k)
1 , 1, 1) = 1

For x = 1, . . . , bS ·W c and y = 1, . . . , L do:

Define waste(L
(k)
1 , x, y) = bβ · L · bS ·W cc + 1 if no waste(L

(k)
i , x, y) exists in

the list and (x, y) 6= (1, 1).

Set B(x, y) = mini

[
waste(L

(k)
i , x, y)

]
.

6. Calculate the minimum total trim loss for the subsheet with dimensions (x, y) for each (x, y)
by executing the following propagation scheme on the elements of the array B (in a breadth
first manner):

B(1, y) = min[B(1, y), B(1, y − 1) + 1] for y = 2, . . . , L.

For x = 2, . . . , bS ·W c do:
B(x, 1) = min[B(x, 1), B(x− 1, 1) + 1]
B(x, y) = min[B(x, y), B(x− 1, y) + y,B(x, y − 1) + x] for y = 2, . . . , L.

7. Update the underestimates as represented in array A:
For x = 1, . . . , bS ·W c and y = 1, . . . , L do:

Set A(x, y) = max(B(x, y), A(x, y)).

8. To add symmetrical builds to the lookup table, do the following:
For x = bS ·W c+ 1, . . . ,W and y = 1, . . . , bS ·W c

A(x, y) = A(y, x)

9. Solve the original trim loss problem for the stock sheet with dimensions W and L with the
WAM-algorithm using the tighter lower bounds stored in array A and the current β-value; and

10. If an optimal solution was found for the problem instance (best build is found where
totaltrimloss ≤ β · L ·W ), stop. Otherwise increase β by δ and return to Step 4.

1. WA as the original Wang-algorithm (Wang [10]);

2. WAM(GG) as introduced by Oliveira and Ferreira [8] with Gilmore-Gomory under-
estimates;

3. WAM(GG + PSSP). The same as WAM(GG) with estimates enhanced according to
the PSSP method and

4. WAM(0 + PSSP). Initial underestimates of zero enhanced by the PSSP method.

Note that the choice of S in Step 3 strives to find a trade-off between the volume of calcu-
lations and effective underestimate improvement in as large a portion of the lookup table
as possible. For small problems it should be feasible to choose S = 1. The underestimates
obtained in Steps 7 and 8 are used as a more informed heuristic in the WAM-algorithm
(Step 9) and as such it prunes the search space. In the rest of this paper the trade-off of ad-
ditional work to improve underestimates and the beneficial effects of a pruned search space
are investigated. In the proposition below, the validity of the underestimates generated



Efficient waste reduction algorithms for the modified Wang method 77

by the PSSP-algorithm are formally considered.

Proposition 1
For each choice β∗ of β (assigned in Steps 1 or 10 of the PSSP-algorithm) Step 7 reg-
isters a sequence of non-decreasing underestimates for total trim-loss at every coordinate
(x, y) of A.

Proof: If for a particular (x, y) it follows that B(x, y) ≤ β∗ · L · bS · W c at Step 5,
it is a candidate solution to the trim-loss problem corresponding to the partial sheet
(x, y). There is, however, the possibility that a build(s) exists for a partial sheet (strictly)
contained in the (x, y) partial sheet with the associated (internal) waste less than or equal
to β∗ · L · bS · W c and the total trim-loss calculated with respect to the partial sheet
(x, y) also less than or equal to β∗ · L · bS ·W c. Such a build will then be a candidate
for the optimal cutting pattern for (x, y). The detection of such builds is accomplished
by Step 6. The A(x, y) is updated in Step 7 (and 8 for symmetry). This is only done
if B(x, y) > A(x, y). This condition guarantees optimality of the minimal waste for the
(x, y) partial sheet since the argument is precisely that of Wang [10]. For the B(x, y)
calculated in Steps 4, 5 and 6 there are only two possibilities.

• B(x, y) ≤ β∗ · L · bS ·W c in which case B(x, y) is the optimal (least waste) solution
for the partial stock sheet (x, y) (according to the Wang [10] argument), or

• B(x, y) = bβ∗ · L · bS ·W cc+ 1, which is true since in such a case no solution exists
with waste is less than or equal to β∗ · L · bS ·W c.

These facts establish that B(x, y) are underestimates of waste for the partial stock sheet
(x, y). Subsequent underestimates are non-decreasing in the light of Step 7. �

4 An example of the lookup table calculation in the PSSP-
algorithm

Consider a stock plate with width 5 and length 5 units. It has two demand rectangles.
The first has a length, width and upperbound of 1 unit, while the second has a width of
2, length of 3 and an upperbound of 5. This example (EP 1) will be used to demonstrate
a typical iteration of the PSSP-algorithm to generate a lookup table of underestimates.

Figure 1 shows the possible builds that are generated by the WA-algorithm with a β-value
of 0.24 and a partial stock sheet with dimensions (3,5). (The maximal builds are e, g and
h).

A typical iteration of Algorithm 2 to demonstrate the generation of a lookup table of
underestimates by utilizing the patterns generated (Figure 1) is shown below.

Step 1. A β-value of 0.24 is arbitrarily chosen for illustrative purposes (through previous
experimentation it was found that this β-value is required for the algorithm to
generate an optimal solution). It should be noted that any other β-value could
also have been chosen with 0 ≤ β < 1; Choose δ such that δ ·L · bS ·W c = 1 (to
make calculations simple).
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a b c

d e f

g h

Figure 1: Builds for the example problem instance (EP1).

Step 2. Initialize array A with underestimates calculated by the Gilmore and Gomory
knapsack [4]. For this problem instance, because a demand piece with dimen-
sions (1, 1) exists, the knapsack generates underestimates of 0 at each dimension
(because the knapsack assumes that there is no bound on the number of demand
pieces that can be used). One could also initialize A with underestimates of zero
without executing the Gilmore and Gomory knapsack for any problem instance,
which would trivially also represent feasible underestimates. (Figure 2(i)).

Step 3. For demonstrative purposes, a value of 0.6 is chosen for S (0 < S ≤ 1). This
results in a partial stock sheet with dimensions (bS ·W c, L) = (3, 5).

Step 4. Solve the problem with a partial stock sheet of dimensions bS ·W c and L (for
the original demand pieces) with the WA-algorithm (Figure 2(ii)). See Figure 1
for possible builds.

Step 5. Initialize array B. Choose the smallest internal trim loss build for each dimension
in the partial stock sheet from the list of builds generated in Step 4 and write it
to array B, if such a build exists. Otherwise, set the value to bβ ·L · bS ·W cc+ 1
(Figure 2(iii)).

Step 6. Execute the propagation scheme in the PSSP-algorithm. The data in each cell
in Figure 2(iv) shows the intermediate calculations. The number at the bottom
of each cell gives the underestimate.

Step 7. Update the lookup table (A) where possible with improved under-estimates.

Step 8. Symmetrical equivalent values are also updated in the final full lookup table
(Figure 2(v) and 2(vi)).

If the Gilmore-Gomory underestimates in Figure 2(i) is compared to the “sharper” under-
estimates calculated with the PSSP-algorithm given in Figure 2(vi) it is found that many
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Figure 2: Demonstration of the generation of underestimates.

of the estimates are more “informed.”

5 Empirical results

Different data sets exist in literature to compare algortihms. The first eight problem
instances used in this paper are from Daza et al. [3] and are given in Table 1.

Problem Stock plate (W,L) Demand rectangles(w, `, b)

P1 (10,15) (1,2,1); (2,3,2); (3,3,2); (3,4,5); (2,8,3); (3,7,1); (4,8,2)
(9,17,1); (11,19,4); (12,21,3); (14,23,4); (15,24,1); (15,24,2);
(16,25,4); (17,27,2); (18,29,3), (21,31,3); (22,32,2); (23,33,3);

P2 (40,70)
(24,34,2); (25,35,2); (26,36,1); (27,37,1); (28,38,1); (29,39,1);
(30,41,1); (31,43,1).
(5,29,1); (9,39,4); (9,55,1); (15,39,1); (11,16,2); (21,23,3);

P3 (40,70)
(14,29,4); (16,19,3); (9,36,2); (4,22,2).
(18,22,2); (10,40,1); (13,27,3); (18,23,2); (8,29,4); (4,16,1);

P4 (40,70)
(9,47,1); (19,19,4); (13,16,2); (16,36,4).

P5 (4,8) (1,2,1); (3,3,3); (1,4,2); (2,2,3).
(3,6,3); (4,7,2); (5,7,1); (2,8,3); (5,8,3); (6,9,2); (7,9,1);

P6 (12,30)
(4,10,4); (5,15,3); (6,19,2); (4,8,2); (4,9,1).
(13,14,1); (11,15,2); (7,14,30); (12,20,4); (11,17,3); (14,16,3);

P7 (32,47)
(8,24,2); (8,17,3); (13,16,1); (16,19,2).
(11,13,3); (17,28,3); (23,23,3); (16,18,3); (15,18,1); (18,23,1);

P8 (50,55)
(15,24,4); (16,24,2); (27,29,2); (10,31,4).

Table 1: The eight problem instances from Daza et al. [3].

Table 2 displays data for each problem that were solved using the WAM(GG)-algorithm
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as introduced by Oliveira and Ferreira [8]. Furthermore, it also displays the results for
the WAM(GG+PSSP)-algorithm, i.e. each problem were solved using the WAM(GG)-
algorithm in Algorithm 2, Step 9 with updated Gilmore-Gomory underestimate values
(PSSP) based on the solutions of the partial sub-problem.

The partial sub-problems were solved using the original demand rectangles and a stock
sheet of the dimensions (bS ·W c, L). The choice of S could conceivably be handled in a
few different ways. Through empirical tests in Oberholzer [7] it was found that S = 0.25,
is generally a good choice.

P1 P2 P3 P4 P5 P6 P7 P8

WAM(GG) Time (sec) 0.62 0.67 0.74 0.55 0.14 0.64 0.56 0.45
WAM(GG+PSSP) Total time (sec) — 0.64 0.73 0.53 — — 0.59 0.45
Trim-loss 0 29 43 31 0 0 8 34

Table 2: Sharper estimates on small problem instances (P1 to P8).

Most authors, including Daza et al. [3] and Christofides and Whitlock [2] report empirical
results for the WA- and WAM-algorithms in general for small, textbook-sized problem
instances. For the test problems (P1, . . . ,P8) considered it is clear that the problems
can be solved very easily and that there is very little merit to further calculate tighter
underestimates using algorithms based on the PSSP ideas. It is uncertain how well these
methods scale when larger problems are used. In the last part of this section some re-
sults are presented based on the solution of larger, industry-sized problem instances with
algorithms based on the WA-, WAM- and PSSP-methods. The problem instances were
obtained from a local corporation that manufactures and sells glass. Table 3 summarizes
these problem instances.

Problem Stock plate (W,L) Demand rectangles

(290,1 440,3); (585,955,1); (560,925,17); (290,950,12);
PG1 (2 000,2 800)

(956,1 195,2); (1 195,1 440,5); (1 440,1 490,1)
(1 130,1 150,108); (894,1 130,162); (889,1 264,108); (979,1 332,108);

PG2 (2 550,3 210)
(1 064,1 086,108); (804,1 264,108); (753,1 330,54)
(290,1 440,3); (585,955,1); (560,925,17); (290,950,12);

PG3 (1 500,2 125)
(955,1 195,2); (1 140,1 195,5); (1 140,1 490,1).
(129,290,20); (355,585,4); (560,925,17); (290,950,12);

PG4 (1 000,1 500)
(395,555,2); (650,796,5); (200,324,10).

Table 3: Set of four C2DGC problem instances from a glass merchant.

Table 4 shows the results obtained when the larger problem instances are solved with
the WA-, WAM(GG)- and PSSP-algorithms. The partial sub-problems for the PSSP-
algorithm are once again solved using the original demand rectangles and a stock sheet
of the dimensions (bS ·W c, L). The results for the partial sub-problems are not shown
separately in Table 4, but the PSSP totals incorporate the calculation effort.

Considering the results in Table 4, it is clear that the WAM(GG)-algorithm does not
perform well for problem instances with larger stock sheets. The reason for this is that
if, for instance, a lookup table of underestimates must be calculated using the Gilmore-
Gomory approach for problem PG2, an underestimate for each cell of the matrix must
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be calculated. This translates to a staggering 2 550 × 3 210 = 8 185 500 underestimates!
Table 4 further shows that to compute these values for PG2, 454.28 seconds of processing
time is required. To solve problem PG2 with the WA-algorithm, requires only 9.87 seconds.
This shows that the WAM-algorithm does not scale well. It should be noted, though, that
after the underestimates are available, the solving process completion is very fast for the
WAM- algorithm. Therefore, the underestimates obtained through the unbounded two-
dimensional knapsack are valuable if available, but it generally takes long to calculate.
This implies that if another method, that executed faster, could be devised to calculate
underestimates; these resulting initial underestimates would also be of value.

Generated Stored Processing Trim
Problem Algorithm

nodes (N) nodes (L) time (sec) loss

PG1 Total: WA 1 766 454 1 974 5.31 96 525
GG Table 274.67
Total: WAM(GG) 14 928 160 275.59 96 525
Total: WAM(0+PSSP) 660 566 1 166 3.27 96 525

PG2 Total: WA 8 244 610 3 756 9.87 302 086
GG Table 454.28
Total: WAM(GG) 8 866 151 456.00 302 086
Total: WAM(0+PSSP) 633 418 1 131 5.60 302 086

PG3 Total: WA 133 946 559 0.94 72 175
GG Table 139.06
Total: WAM(GG) 2 118 71 139.48 72 175
Total: WAM(0+PSSP) 45 840 357 0.87 72 175

PG4 Total: WA 934 468 1 504 4.12 8 610
GG Table 55.15
Total: WAM(GG) 20 200 156 55.38 8 610
Total: WAM(0+PSSP) 263 086 1 030 1.93 8 610

Table 4: A summary of the results when the PSSP-algorithm was applied to problems from

industry.

For the PSSP-algorithm, the results in Table 4 were obtained by simply using initial
underestimates of 0 to initialize the PSSP-algorithm, thereby eliminating the need for
costly calculations of underestimates.

The results show that by eliminating the underestimate calculation using the Gilmore-
Gomory approach, processing time decreases significantly. Lastly, if the calculation time
for the underestimate table is not considered, it should be noted that the WAM(GG)-
algorithm completes very fast. Therefore, if a method can be devised where underestimates
(not necessarily as good as the Gilmore-Gomory estimates but better than 0) are produced
quickly, the PSSP-algorithm might be enhanced.

Figure 3 shows that the PSSP-algorithm with initial underestimates of zero does indeed
scale well for problem instances where larger stock sheets are concerned.

An observation illustrated in Figure 4, adapted from Luger and Stubblefield [5], applies
to the modified Wang- and PSSP-algorithms and their respective mechanisms to generate
underestimates with various levels of informedness. Referring to Figure 4, the total cost of
solving the given problem must be minimized. To accomplish this, a strategy to calculate
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Figure 3: Scalability of the PSSP-algorithm with initial underestimates of zero.

underestimates must be chosen that does not have calculation times that spiral out of
control, and yet delivers results that can decrease the application cost of the algorithm
used as solver. The modified Wang method fails here, according to Figure 3, where the
control strategy becomes costly as the stock sheet size increases. The PSSP-algorithm, on
the other hand, succeeds in generating effective underestimates at a reasonable cost.
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0

0

“Informedness”

Figure 4: A plot of the different computational costs as a function of informedness.

6 Conclusion

This paper introduces alternative algorithms called partial stock sheet propagation (PSSP)
algorithms, which aim at improving the lower bounds as produced by the unbounded two-
dimensional knapsack function of Gilmore and Gomory. Improvements on execution time,
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generated nodes and stored nodes were illustrated through the results of some numerical
experiments. For larger, more complex, industry type of problems, the Gilmore and Go-
mory estimates were found to be computationally costly to produce. The simple approach
to start with underestimates of zero and to improve them using the PSSP algorithm de-
scribed in this paper turned out to be effective. However, the main practical result found
in this research was that the easy to find less informed heuristic functions performed well
(computationally) on more complex problems in producing exact trim loss solutions. For
small problems the computational cost of most of the approaches is comparable.
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