
Volume 29 (2), pp. 169–180

http://www.orssa.org.za

ORiON
ISSN 0529-191-X

c©2013

Uncapacitated facility location problem with
self-serving demands

E Monabbati∗

Received: 25 September 2012; Revised: 21 February 2013; Accepted: 13 March 2013

Abstract

In classical uncapacitated facility location problems (UFLP) the goal is to satisfy require-
ments of some demand points by setting up some servers, among potential facility locations,
such that the total cost including service costs and fixed costs are minimized. In this paper a
generalization of UFLP is considered in which some demand points, called self-serving, could
be served exclusively by a new server at that point. Numerical experiments show that near
optimal solutions are achieved by the proposed method.

Key words: Location problems, generalization of uncapacitated facility location problem, dual-ascent.

1 Introduction

In the uncapacitated facility location problem (UFLP) there are m customers indexed by
i ∈ I := {1, 2, . . . ,m} which may be served by n potential facilities (servers) indexed by
j ∈ J := {1, 2, . . . , n}. Requirements of a demand point i could be served by a nonnegative
cost cij from facility j. Setting up a server in facility location j has a fixed cost fj > 0. The
goal is to choose some facility locations to set up servers, such that a total cost including
service costs and fixed costs are minimized. This NP-hard problem has several interesting
mathematical formulations, which can be found in survey papers on this topic such as
[5, 9, 14, 15], as well as in the references therein. Many researchers have handled this
problem and devised heuristic, approximation and exact algorithms to solve this problem
(see [8, 14] for some comparisons of these algorithms).

In this paper a simple generalization of UFLP, called UFLP-SS, has been investigated.
Suppose the requirements of some demand points, called self-serving demands, could be
satisfied by setting up a server there. We call these potential facility locations, demand-
side. Note that a server established in a self-serving demand point, could only fulfill the
requirements of this point. Denote by K = {1, . . . , p} ⊆ I the set of self-serving demands
and also let a fixed cost of setting up a server in such demand points be gk > 0, k ∈ K.

∗Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran,
91775-1159, email: eh_mo236@stu-mail.um.ac.ir

169



170 E Monabbati

UFLP-SS has a linear zero-one programming formulations similar to UFLP. The objective
is to

minimise
∑
i∈I

∑
j∈J

cijxij+
∑
k∈K

gkzk +
∑
j∈J

fjyj (1)

subject to
∑
j∈J

xkj + zk = 1, k ∈ K, (2)

∑
j∈J

x`j = 1, ` ∈ L, (3)

xij − yj ≤ 0, i ∈ I, j ∈ J , (4)

zk, yj , xij ∈ {0, 1}, i ∈ I, j ∈ J , k ∈ K, (5)

where L = I \K, xij is one if demand point i is served by a server placed at the potential
facility location j and is zero otherwise, yj is one if a server is set up at potential location
j and zero otherwise, zk is one, only if self-serving demand point k is served by a server
placed at this point.

Constraint set (2) shows that a self-serving demand point may be served by either a
demand-side server or a server from potential facility locations. Constraint sets (3) and
(4) are exactly the same as for UFLP. Constraint set (3) ensures that each demand point
must be served by a server and constraint set (4) reveal that if no server is placed at
location j, (i.e. yj = 0), then no demand point could be served from this facility location.
It is easy to see that if K = ∅ then UFLP-SS reduces to UFLP.

Recently, a feasible region of this problem, when equalities are replaced by inequalities,
was studied by Baiou & Barahona [2] on a directed graph. They give conditions under
which the region has integral vertices. Vasko et al. [16] introduced this model as partial
coverage UFLP and investigated some large scale applications in inventory sizing. They
also show that this problem simply could be converted to a UFLP.

In UFLP-SS, (1)–(5), replacing (2) with∑
j∈J

xkj + zk ≥ 1, k ∈ K

we have a problem which is known as uncapacitated facility location problem with penalties,
when K = I. It is easy to see that the later is equivalent to UFLP-SS. Several approxi-
mation algorithms are proposed for this problem and its variants (see [1, 4, 7, 10, 11, 12,
17, 18]).

This section is concluded by describing another relation between UFLP and UFLP-SS.
Consider a UFLP in which a location of a subset J P ⊆ J of servers are determined,
that is, there exist servers at each potential facility location in the set J P . Therefore
the aim is to serve all demand points using some new servers among J \ J P potential
facility locations together with servers in J P . Define decision variables xij and yj as in
UFLP-SS, and change the definition of zk as follows: zi is one, only if a server in J P
satisfies the requirements of demand point i. On the other hand, if zi = 1 then a server
from J P with minimum service cost is assigned to the demand point i. Thus by the



Uncapacitated facility location problem with self-serving demands 171

assumption gi = minj∈J P cij we have a UFLP-SS. In the next section an implementation
of the Erlenkotter algorithm proposed in [6] is modified to find near optimal solutions for
UFLP-SS.

2 Solution procedure

The Erlenkotter algorithm is a heuristic weak-dual based method for UFLP. In this method
considering weak-dual of the problem and complementary slackness conditions, a near-
optimal primal solution is given. The Erlenkotter method is modified and applied to
UFLP-SS, directly.

Consider UFLP-SS as formulated in equations (1)–(5). An LP-relaxation of the problem
could be achieved by relaxing the integrality assumption on xij , yj and zk such that the
objective is to

minimise zp(x,y, z) =
∑
i∈I

∑
j∈J

cijxij +
∑
k∈K

gkzk +
∑
j∈J

fjyj

subject to
∑
j∈J

xkj + zk = 1, k ∈ K,
∑
j∈J

x`j = 1, ` ∈ L,

−xij + yj ≥ 0, i ∈ I, j ∈ J , k ∈ K,
zk, yj , xij ≥ 0, i ∈ I, j ∈ J , k ∈ K.

A dual of this LP, using dual-variables u, v, w, is to

maximise
∑
k∈K

uk+
∑
`∈L

v` (6)

subject to uk − wkj ≤ ckj , j ∈ J , k ∈ K, (7)

v` − w`j ≤ c`j , ` ∈ L, j ∈ J , (8)

uk ≤ gk, k ∈ K, (9)∑
i∈I

wij ≤ fj , j ∈ J , (10)

wij ≥ 0, i ∈ I, j ∈ J . (11)

From (7), (8) and (11) we have

wkj ≥ (uk − ckj)+, k ∈ K, j ∈ J ,
w`j ≥ (v` − c`j)+, ` ∈ L, j ∈ J .

where (a)+ = max{0, a}. Assume that wkj = (uk − ckj)+, k ∈ K and w`j = (v` − c`j)+,
` ∈ L, j ∈ J . Eliminating variables wij we get the following form of the dual problem,



172 E Monabbati

called the condensed dual form:

maximise zd(u,v) =
∑
k∈K

uk +
∑
`∈L

v` (12)

subject to ρj(u,v) ≤ 0, j ∈ J , (13)

uk ≤ gk, k ∈ K, (14)

where

ρj(u,v) =
∑
k∈K

(uk − ckj)+ +
∑
`∈L

(v` − c`j)+ − fj .

This pair of primal-dual problems is solved by finding a primal and dual feasible solutions
(x,y, z) and (u,v), respectively, satisfying the following complementary slackness (CS)
conditions (after some simplifications)

xkj(uk − ckj)− = 0, j ∈ J , k ∈ K, (15)

x`j(v` − c`j)− = 0, j ∈ J , ` ∈ L, (16)

zk(uk − gk) = 0, k ∈ K, (17)

yjρj(u,v) = 0, j ∈ J , (18)

(uk − ckj)+(yj − xkj) = 0, j ∈ J , k ∈ K, (19)

(v` − c`j)+(yj − x`j) = 0, j ∈ J , ` ∈ L, (20)

where (a)− = min{0, a}. Note that equations (15) and (16) are obtained considering the
fact that a− (a)+ = (a)−.

Given a dual feasible solution, (u,v), using complementary slackness conditions (15)–(20),
one can obtain a feasible integer primal solution. To this end new notation are introduced.
Define J (u,v) and K(u) as follows

J (u,v) = {j ∈ J | ρj(u,v) = 0},
K(u) = {k ∈ K | uk = gk}.

If j ∈ J (u,v) then the corresponding primal solution, yj , could be equal to 1. This is
true for zk if k ∈ K(u). Choose a subset J + ⊆ J (u,v) as indices of candidate primal
variables which may be 1. A condition under which a primal solution, (x,y, z), exists and
satisfies all CS conditions, but not necessarily (19) and (20) are now derived.

Let ` ∈ L. Since (x,y, z) is feasible, then from (3), there is an index j ∈ J + such that
x`j is one and (16) implies that (v` − c`j)− = 0, i.e. v` ≥ c`j .
Now, let uk < gk for some k ∈ K, then zk = 0 from (17). Thus from (2) we have∑

j∈J xkj = 1. Therefore, similar to the previous arguments, we must have an index

j ∈ J + such that uk ≥ ckj .
Consequently if (u,v) has the properties

for each k ∈ K \ K(u) there is an index j ∈ J + such that uk ≥ ckj ,
for each ` ∈ L there is an index j ∈ J + such that v` ≥ c`j ,

(21)



Uncapacitated facility location problem with self-serving demands 173

then the following primal feasible solution is obtained

yj =

{
1 if j ∈ J +,

0 otherwise,
xkj =

{
1 if k ∈ K \ K(u) and j = α(k),

0 otherwise,

zk =

{
1 if k ∈ K(u),

0 otherwise,
x`j =

{
1 if ` ∈ L and j = α(`),

0 otherwise,

(22)

where α(i) is such that ciα(i) = minj∈J+ cij . This pair of primal-dual solutions satisfy all
complementary slackness conditions except (19) and (20).

Hence the duality gap is given by the expression in Lemma 1

Lemma 1 Given dual feasible solution (u,v) satisfying (21) and corresponding primal
solution (22) we have

zp(x,y, z)−zd(u,v) =
∑

k∈K\K(u)

∑
j∈J+

j 6=α(k)

(uk−ckj)++
∑
k∈K

∑
j∈J+

(uk−ckj)++
∑
`∈L

∑
j∈J+

j 6=α(`)

(v`−c`j)+.

Proof: Primal and dual solutions are constructed such that they were feasible and satisfied
all complementary slackness conditions except (19) and (20). A demand point i is assigned
to a server α(i) ∈ J +, that is xi,α(i) = 1. If there is an index α(i) 6= j ∈ J + such that
ui > cij then yj = 1, xij = 0 and (ui − cij)+ > 0. Thus (ui − cij)+(yj − xij) = (ui − cij)+;
The first and the last term in the result are drawn from this fact. Now we focus on the
second summation. If k ∈ K(u) then zk = 1, therefore xkj = 0 by (2), j ∈ J . On the
other hand for each j ∈ J + we have yj = 1, so, (uk − ckj)+(yj − xkj) = (uk − ckj)+,
j ∈ J +. This completes the proof. �

Using optimality conditions for LPs (primal and dual feasibility and complementary slack-
ness), we endeavor to solve the LP-relaxation of UFLP-SS. Our algorithm like Erlenkot-
ter’s, consists of two procedures: dual ascent and dual adjustment. The first one tries to
find a good dual feasible solution that satisfies (21), and the second attempts to reduce
the infeasibility of complementary slackness conditions (19) and (20).

2.1 Dual ascent

The dual ascent procedure starts with a dual feasible solution (u,v) and a set I ′ = K′∪L′
of candidate indices for ascending. It tries to achieve a better dual solution by increasing
the components of v` , ` ∈ L′, uk, k ∈ K′. Increasing is based on two simple facts:

• If ρj(u,v) < 0 and v` ≥ c`j for some ` ∈ L′ then increasing v` by ∆ > 0 increases
ρj(u,v) by the amount of ∆,

• If v` ≤ c`j for some ` ∈ L′ then increasing v` makes no change in ρj(u,v).

These facts are also true if we replace v` by uk for some k ∈ K′. Algorithm 1 illustrates
the steps of the dual ascent algorithm.

The following lemma shows that a dual solution obtained by the dual ascent algorithm
satisfies condition (21).



174 E Monabbati

Algorithm 1: Dual ascent procedure

Input : A dual feasible solution (u,v) and the sets K′, L′.
Output : A dual feasible solution (u,v) that satisfies condition (21).
while L′ 6= ∅ do1

Select ` from L′2

∆1 ← min{−ρj(u,v) : ρj(u,v) ≤ 0, v` ≥ c`j}3

∆2 ← min{c`j − v` : v` < c`j}4

∆← min{∆1,∆2}5

if ∆ > 0 then6

v` ← v` + ∆7

Update ρj(u,v), j ∈ J8

else9

L′ ← L′ \ {`}10

while K′ 6= ∅ do11

Select k from K′12

∆1 ← min{−ρj(u,v) : ρj(u,v) ≤ 0, uk ≥ ckj}13

∆2 ← min{ckj − uk : uk < ckj}14

∆3 ← gk − uk15

∆← min{∆1,∆2,∆3}16

if ∆ > 0 then17

uk ← uk + ∆18

Update ρj(u,v), j ∈ J19

else20

K′ ← K′ \ {k}21

Lemma 2 Algorithm 1 ends at a dual feasible solution which satisfies condition (21).

Proof: Without loss of generality we assume that K′ = K and L′ = L in Algorithm 1.
Let (u,v) be a dual solution at an iteration of the dual ascent procedure and suppose that
condition (21) is not satisfied, that is

v`0 < c`0j for all j ∈ J (u,v) and some `0 ∈ L, (23)

or
uk0 < ck0j for all j ∈ J (u,v) for some k0 ∈ K \ K(u). (24)

It is shown that in each case, ∆, which is computed in Steps 3–5 or Steps 13–16 in
Algorithm 1, is positive, and therefore Algorithm 1 does not terminate at (u,v).

First suppose v satisfies condition (23). Consider Steps 3 through 5. Since v`0 < c`0j , then
∆2 > 0. If ∆1 = 0 then ρj0(u,v) = 0 for some j0 ∈ J for which v`0 ≥ c`0j0 , meanwhile
j0 ∈ J (u,v) and this contradicts condition (23). Thus ∆ > 0 in this case.

Assume that u satisfies condition (24). The proof of this part is very similar to the previous
one. Since k0 6∈ K(u) thus ∆3 > 0, by definition. If ∆1 = 0 then ρj0(u,v) = 0 for some
j0 for which uk0 ≥ ck0j0 which is impossible. It is clear that ∆2 is also positive (see Steps
13–16 from Algorithm 1). Thus ∆ = min{∆1,∆2,∆3} > 0. �

Observe that in general we cannot replace K(u) by one of its subsets, as we do for
J (u,v), since the upper bound of variable uk may prevent it to increase, e.g. when
gk < minj∈J+ ckj .



Uncapacitated facility location problem with self-serving demands 175

2.2 Dual adjustment

Algorithm 1 gives a good feasible dual solution. However, this solution could cause some
violations in the complementary slackness conditions. If there is more than one j ∈ J +

for which v` ≥ c`j then the duality gap is increased by (v` − c`j)
+ > 0 for j ∈ J +,

j 6= α(`). Similarly, if there is more than one j ∈ J + for which uk ≥ ckj then the duality
gap is increased by (uk − ckj)+ > 0 for j ∈ J +, j 6= α(k) (see Lemma 1). To state how
the dual adjustment procedure could improve the duality gap, the following notation are
introduced

J ∗1k = {j ∈ J + : uk ≥ ckj}, k ∈ K \ K(u),

J ∗2` = {j ∈ J + : v` ≥ c`j}, ` ∈ L,
J +
1k = {j ∈ J + : uk > ckj}, k ∈ K \ K(u),

J +
2` = {j ∈ J + : v` > c`j}, ` ∈ L,
I+1j = {k : J ∗1k = {j}}, j ∈ J +,

I+2j = {` : J ∗2` = {j}}, j ∈ J +,

I−1j = {k ∈ K : uk − ckj > 0}, j ∈ J ,
I−2j = {` ∈ L : v` − c`j > 0}, j ∈ J ,

ckβ(k) = min
j∈J+

j 6=α(k)

ckj , k : |J +
1k| > 1,

c`β(`) = min
j∈J+

j 6=α(`)

c`j , ` : |J +
2` | > 1.

Suppose (u,v) satisfies property (21). Let k ∈ K \ K(u) and j0, j1 ∈ J + be such that
uk > ckjh , h = 0, 1. Thus wkjh = uk − ckjh > 0, h = 0, 1. Let x be a corresponding
primal solution for (u,v). Since x is primal feasible then

∑
j xkj = 1 (observe that since

k ∈ K \ K(u) then zk = 0) and at least one of xkjh , h = 0, 1, say xkj0 , is zero, meanwhile
j0 ∈ J +, so yj0 = 1. Therefore wkj0(yj0 − xkj0) > 0. This shows that complementary
condition (18) is violated if |J +

1k| > 1.

To decrease these violations a decrease in uk is needed. By definition ρj(u,v) =
∑

`∈L(v`−
c`j)

+ +
∑

k∈K(uk − ckj)+ − fj . Thus a change in uk affects ρj(u,v) if and only if k ∈ I−1j .
On the other hand if uk decreases to u′k by ∆ > 0 then (u′k − ckj)+ < (uk − ckj)+ for
j ∈ J +

1k. Thus a decrease in uk makes all ρj(u,v) negative with j ∈ J +
1k. Since |J +

1k| > 1,
then J +

1k has at least two elements α(k) and β(k), i.e. after changing uk to uk + ∆ we
have ρα(k) < 0, ρβ(k) < 0. These slacks could be compensated by an increase in variable

us, s ∈ I−1α(k) ∪ I
−
1β(k) provided that this variable does not change any ρj(u,v) other than

ρα(k) and ρβ(k), that is J ∗1s = {α(k)} or J ∗1s = {β(k)}, in other words s ∈ I+1α(k) ∪ I
+
1β(k).

Here we choose a variable from K to compensate for the decrease in uk. One can remove
this restriction and select the remunerated variable from L.

A similar argument help us to choose an index ` ∈ L as a candidate variable among v`,
` ∈ L. The amount that a variable’s value can decrease in the dual adjustment algorithm
is discussed next. In Algorithm 2, which shows the dual adjustment steps, a candidate



176 E Monabbati

variable uk (v`) is decreased to the largest ckj (c`j) not greater than uk (v`) (line 5 or 20).
Next in lines 6 and 21 all ρj(u,v), with uk > ckj (v` > c`j) are updated.

In lines 8–13 the dual ascent algorithm is called three times. The first call attempts to
increase the dual variables in the set I+1α(k) ∪ I

+
1β(k) to remove the slack of constraints

ρh(u,v) < 0, h = α(k), β(k). The second call is prompted from decreasing uk discontin-
uously to the next ckj and the last call ensures that (u,v) is dual feasible and satisfies
(21).

Algorithm 2: Dual adjustment procedure
Input : A dual feasible solution (u,v) that satisfies (21)
Output : Tries to reduce duality gap.
for k ∈ K \ K(u) do1

if |J+
1k| > 1 then2

if I+1α(k) ∪ I
+
1β(k) 6= ∅ then3

c∗k ← maxj:uk>ckj ckj4

∆← uk − c∗k5

For each j such that uk > ckj set ρj(u,v)← ρj(u,v)−∆6

uk ← c∗k7

K′ ← I+1α(k) ∪ I
+
1β(k), L

′ ← ∅8

apply Algorithm 1 on (K′,L′)9

K′ ← K′ ∪ {k}10

apply Algorithm 1 on (K′,L′)11

K′ ← K \ K(v)12

apply Algorithm 1 on (K′,L′)13

Update J+, K(u), J+
1j ’s and I+1j ’s14

If uk doesn’t become its original value then go to 215

for ` ∈ L do16

if |J+
2`| > 1 then17

if I+2α(`) ∪ I
+
2β(`) 6= ∅ then18

c∗` ← maxj:v`>c`j c`j19

∆← v` − c∗`20

for each j such that v` > c`j set ρj(u,v)← ρj(u,v)−∆21

v` ← c∗`22

K′ ← ∅, L′ ← I+2α(`) ∪ I
+
2β(`)23

apply Algorithm 1 on (K′,L′)24

L′ ← L′ ∪ {`}25

apply Algorithm 1 on (K′,L′)26

L′ ← L27

apply Algorithm 1 on (K′,L′)28

Update J+, J+
2j ’s and I+2j ’s29

If v` doesn’t become its original value then go to 17.30

Figure 1 shows a combination of the proposed procedures which may be used to solve
UFLP-SS. Note that an initial dual feasible solution of the problem is uk = min{gk,minj ckj},
k ∈ K, v` = minj ck`, ` ∈ L. The subset J + ⊆ J (u,v) is constructed using a simple drop
heuristic method such as the one presented in Algorithm 3.



Uncapacitated facility location problem with self-serving demands 177

Initialize a dual feasible solution (u, v)

Perform dual ascent with (u, v) and the sets K, L as input parameters

Select a subset J+ from J̄ (u, v)

Perform dual adjustment starting with (u, v) obtained at previous step

Figure 1: A procedure to produce near optimal solution of UFLP-SS.

Algorithm 3: A procedure to construct a subset J +

Input : A set J (u,v)
Output : Construct a subset J+ ⊆ J (u,v) satisfying (21)
J+ ← J (u,v)1

improvement ← true2

while improvement do3

for j ∈ J+ do4

J 0 ← J+ \ {j}5

if there is a primal solution satisfying (22) using the set J 0 then6

tj ← objective value at the primal solution7

else8

tj ← +∞9

tj∗ ← min tj10

if tj∗ = +∞ then11

improvement ← false12

else13

J+ ← J+ \ {j∗}14

3 Computational results

A method proposed in the previous section is applied on randomly generated test cases.
A method similar to the one used in Barahona & Chudak [3] and Mladenovic et al. [13]
is used to generate random UFLP-SS’s. The number of m+ n point (m potential facility
locations and n demand points) are uniformly generated in rectangle [0, 0.5]× [0, 1]. The
service cost cij is computed by rounding 1000 times the Euclidean distance between points
i and j. All installation costs fj are set to d1000

√
n/me (type I), d100

√
n/me (type II)

and d10
√
n/me (type III) for each n, m.

A demand-side server fixed set up costs gk is set to be d100
√
m/ne. For each m, reported

in Table 1, we run the code for n = m/2 and two values of p = m,m/2. This allows us to
probe the performance of the algorithm concerning the relation of potential servers and
potential demand-side servers.



178 E Monabbati

m fj p 1− gap/zd(u,v) run time (sec)

200

100 0.99 6.70
Type I

200 1.00 0.94
100 0.99 2.35

Type II
200 0.99 0.89
100 0.99 2.29

Type III
200 0.99 0.77

400

200 0.99 56.47
Type I

400 1.00 5.79
200 0.99 21.82

Type II
400 0.99 5.48
200 0.99 18.50

Type III
400 0.99 5.23

800

400 0.98 436.63
Type I

800 1.00 53.41
400 0.99 171.80

Type II
800 0.99 54.89
400 0.99 151.80

Type III
800 0.99 46.76

1600

800 0.99 2 897
Type I

1 600 0.99 295.95
800 0.99 1 243

Type II
1 600 0.99 248.77
800 0.99 1 072

Type III
1 600 0.99 261.92

Table 1: Algorithm performance and run time.

Table 1 contains the results of applying the proposed algorithm on randomly generated
UFLP-SS. It was implemented in MATLAB 7.10 and run on an Intel rCore 2 Duo CPU
2.00 GHz, with 3 GB of RAM. Ten and five problems for m < 500 and m > 500 were
respectively generated.

Column 4 of the table contains the average solution quality (1− gap/zd(u,v)) and shows
the performance of the algorithm to find optimal solutions of the LP-relaxation. Column 5
displays the average run time on each test case in seconds.

From this results it can be observed that the run-time is depend on the number of demand-
side potential facilities versus the number of demand points. Experiments show that the
run times of the algorithm substantially decrease when p approaches m.

4 Conclusions and future work

In this paper we considered a generalization of UFLP in which some demand points could
be satisfied by servers, called demand-side, located at that point. It is shown that a version
of UFLP in which the location of some facilities are pre-determined, could be converted to
UFLP-SS. Finally a dual-based heuristic algorithm like Erlenkotter’s is presented. Compu-
tational results show that this method gives near optimal solutions for randomly generated
UFLP-SS’s. Another consequence is that the run time of the proposed procedure drops
when p, the number of demand-side servers, approaches m.



Uncapacitated facility location problem with self-serving demands 179

It seems that the idea of the proposed algorithm could be applied on the problems with
more general structure. If demand constraints are in the form∑

j∈J
xij +

∑
k∈K

aikzk = 1, i ∈ K,

where aik ∈ R and i, k ∈ K, then the condensed dual reads

maximise zd(u,v) =
∑
k∈K

uk+
∑
`∈L

v` (25)

subject to ρj(u,v) ≤ 0, j ∈ J , (26)

ATu ≤ g, (27)

where A = (aik)i,k∈K (see equations (13) and (14)). The framework of dual ascent and
dual adjustment plus a projection on the null space of A can be used. Note that if A = I
then we have a UFLP-SS.

Acknowledgment

The author thanks three anonymous referees for their constructive comments. The author
also gratefully appreciates the help of Martin P. Kidd and Stephan E. Visagie for improving
the presentation of the paper.

References

[1] Asadi M, Niknafs A, & Ghodsi M, 2009, An approximation algorithm for the k-level uncapacitated
facility location problem with penalties, in Sarbazi-Azad H, Parhami B, Miremadi SG & Hessabi
S (Eds), Advances in Computer Science and Engineering, Volume 6 of Communications in Computer
and Information Science, pp. 41–49, Springer, Heidelberg.

[2] Baiou M & Barahona F, 2009, On the integrality of some facility location polytopes, Journal of
Discrete Mathematics, 23(2), pp. 665–679.

[3] Barahona F & Chudak F, 1999, Solving large scale uncapacitated location problems, (Unpublished),
Technical Report RC21515, IBM, New York (NY).

[4] Charikar M, Khuller S, Mount DM & Narasimhan G, 2001, Algorithms for facility location
problems with outliers, Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms,
Washington (DC), pp. 642–651.

[5] Cornuejols G, Nemhauser GL & Wolsey LA, 1990, The uncapacitated facility location problem,
pp. 119–171 in Mirchandani PB & Francis RL (Eds), Discrete location theory, Wiley-Interscience,
New York (NY).

[6] Francis RL & McGinnis F & White JA, 1992, Facility layout and location: An analytical approach,
Prentice Hall, Upper Saddle River (NJ).

[7] Hayrapetyan A, Swamy C, & Tardos E, 2005, Network design for information networks, Pro-
ceedings of the 17th annual ACM-SIAM symposium on Discrete algorithms, Philadelphia (PA), pp.
933–942.

[8] Hoefer M, 2003, Experimental comparison of heuristic and approximation algorithms for uncapaci-
tated facility location, pp. 165–178 in Jansen K, Margraf M, Mastrolilli M & Rolim J (Eds),
Experimental and Efficient Algorithms, Springer Berlin, Heidelberg.

[9] Krarup J & Pruzan PM, 1983, The simple plant location problem: Survey and synthesis, European
Journal of Operational Research, 12(1), pp. 36–81.



180 E Monabbati

[10] Li Y, Du D, Xiu N & Xu D, 2012, Improved approximation algorithms for the facil ity location
problems with linear/submodular penalty, Working paper series 2012, [Online], [Cited October, 15th

2013], Available at http://www.optimization-online.org/DB HTML/2012/02/3343.html.

[11] Li Y, Du D, Xiu N & Xu D, 2012, A unified dual-fitting approximation algorithm for the facility
location problems with linear/submodular penalties, Journal of Combinatorial Optimization, August,
pp. 1–12.

[12] Li G, Wang Z, & Xu D, 2012, An approximation algorithm for the k-level facility location problem
with submodular penalties, Journal of Industrial and Management Optimization, 8(3), pp. 521–529.

[13] Mladenovic N, Brimberg J & Hansen P, 2006, A note on duality gap in the simple plant location
problem, European Journal of Operational Research, 174(1), pp. 11–12.

[14] Thizy JM, Wassenhove LNV & Khumuwala BM, 1985, Comparison of exact and approximate
methods of solving the uncapacitated plant location problem, Journal of Operations Management, 6(1),
pp. 23–34.

[15] Verter V, 2011, Uncapacitated and capacitated facility location problems, pp. 25–37 in Eiselt HA
& Marianov V (Eds), Foundations of location analysis, Springer, New York (NY).

[16] Vasko FJ, Newhart DD, Stott KL & Wolf FE, 2003, A large-scale application of the partial
coverage uncapacitated facility location problem, Journal of Operational Research Society, 54(1),
pp. 11–20.

[17] Xu G & Xu J, 2005, An LP rounding algorithm for approximating uncapacitated facility location
problem with penalties, Information Processing Letters, 94(3), pp. 119–123.

[18] Xu G & Xu J, 2009, An improved approximation algorithm for uncapacitated facility location problem
with penalties, Journal of Combinatorial Optimization, 17(4), pp. 424–436.


