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Abstract

The vehicle routing problem with time windows is a widely studied problem with many real-
world applications. The problem considered here entails the construction of routes that a
number of identical vehicles travel to service different nodes within a certain time window.
New benchmark problems with multi-objective features were recently suggested in the litera-
ture and the multi-objective optimisation cross-entropy method is applied to these problems
to investigate the feasibility of the method and to determine and propose reference solutions
for the benchmark problems. The application of the cross-entropy method to the multi-
objective vehicle routing problem with soft time windows is investigated. The objectives
that are evaluated include the minimisation of the total distance travelled, the number of ve-
hicles and/or routes, the total waiting time and delay time of the vehicles and the makespan
of a route.
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1 Introduction

The vehicle routing problem (VRP) remains one of the most studied problems in the field
of operations research. It has many real-world applications, but exact methods require
a considerable amount of computational time. The multi-objective optimisation (MOO)
version of the vehicle routing problem with time windows (VRPTW) is considered, with
a focus on the VRP with soft time windows variant (VRPSTW). In this problem type,
a number of vehicles have to provide a service to customers at different locations while
adhering to constraints with regard to the capacity of the vehicle and the time window
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in which service should start. Although the problem has been considered as a multi-
objective problem by a number of authors [3, 9, 12, 13, 16, 20, 21], the focus has primarily
been on minimising the number of vehicles and the total travel distances. This paper
considers these and other pairs of conflicting objectives. The research aims were twofold:
(1) to show that the multi-objective cross-entropy method (MOO CEM) can be applied to
the VRPTW and (2) to provide reference solutions to a new set of benchmark problems
recently developed by Castro-Gutierrez et al. (2011). Since the benchmark set is new, and
reference solutions could not be found at the time of writing, the solution sets presented
in this paper may serve as a first reference set for OR practitioners.

In general MOO almost always returns a set of two or more good solutions as opposed
to single-objective optimisation, in which the optimum is a single solution. The decision
maker still has to choose a specific solution from a set of MOO solutions. This set is often
referred to as the Pareto optimal set.

The paper is structured into the following sections: it starts with a brief overview of the
VRPTW and its formulation followed in the next two sections by an overview of the field
of MOO in vehicle routing, and the nature of the CEM and its application to combinatorial
optimisation. The formulation of the multi-objective model and the basic structure of the
algorithm are then explained, followed by the presentation of the results. The final section
concludes the paper.

2 The vehicle routing problem with time windows

In logistics and distribution, decision makers are often faced with the problem of developing
optimal routes for vehicles that service different customers. The vehicle routing problem
is considered to be a variation of the travelling salesperson problem where one salesperson
has to visit a certain number of cities before returning to the home city. Also termed the
truck dispatching problem, Dantzig & Ramser (1959) considered it a generalisation of the
travelling salesperson problem. In the vehicle routing problem, a number of vehicles need
to be routed to geographically dispersed nodes or customers. In addition, vehicles have
limited capacity, which places a restriction on the number of nodes that one vehicle can
visit. The vehicles also perform a service at the different nodes. The VRP has evolved into
different subproblems, for example the VRP with stochastic demand and the VRPTW,
which are more realistic representations of real-world problems. The VRPTW has many
applications, such as the routing of buses and trains, bank deliveries and postal deliveries.

The problem under consideration in this study is the VRPTW. In this problem, the time
in which a vehicle may arrive to begin service at a certain node is limited to a certain time
window. The VRP with soft time windows further implies that vehicles can arrive after
the time window has closed, although this is often associated with a penalty cost for late
arrival.

In the VRPTW, a set of vehicles with limited capacity is to be routed from a central depot
to a set of geographically dispersed customers with known demands and predefined time
windows (Tan et al. 2006).

Toth & Vigo (2002) summarise the concept of the VRPTW, as applicable to this paper,
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as follows.

1. Each route visits the depot vertex.

2. Each customer vertex is visited by exactly one route (within the specified time
window).

3. The total demand of the customers visited by a route does not exceed the capacity
of the separate vehicles.

The addition of time windows increases the complexity and computational intensity of the
problem. The VRP is classified as an NP-hard problem and consequently the VRPTW
is a constrained NP-hard problem. Taillard et al. (1997) claim that in the relaxation of
soft time windows feasible solutions are easier to find as there are fewer hard constraints,
but further state that this is countered by the way hard time windows in turn allow for
infeasible solutions to be filtered out fairly quickly.

Kallehauge et al. (2005) define the VRPTW in mathematical terms with a fleet of vehicles,
V, a set of customers C and a directed graph G. N is the set of vertices, 0, 1, . . . , n + 1
with 0 and n + 1 representing the depot (respectively the starting and returning depot).
Define xijk as

xijk =

{
1, if vehicle k drives directly from vertex i to vertex j,

0, otherwise.

Further definitions are the capacity of each vehicle (Ck), the demand of each customer i
(Di), the cost (or distance) cij and time (tij) associated with each arc (i, j) where i 6= j.
The time window [ai, bi] is associated with each customer. In the case of hard time windows
the vehicle must arrive at the customer before bi and in the case of soft time windows a
delay time is logged. If a vehicle arrives before the time window starts, it incurs a waiting
time until ai when the service can start. The variable sik denotes the time at which
vehicle k starts service at customer i. This is defined for every vehicle k and customer
i, but becomes irrelevant if vehicle k does not service customer i. It is assumed that the
time window of the depot always starts at zero and no service is required, i.e. s0k = 0,
and the time back at the depot (although no service is required) is defined as s(n+1)k.

The mathematical model of Kallehauge et al. (2005) is adopted for the multi-objective
VRP with soft time windows as shown in formulation (1) – (5).

The objective of the optimisation model is to

minimise k, (1)

minimise
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk, (2)

minimise

(
max
k

(
s(n+1)k

))
, (3)

minimise
∑
k∈V

tkw, and (4)

minimise
∑
k∈V

tkd (5)
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subject to the constraints

∑
k∈V

∑
j∈N

xijk = 1, i ∈ C, (6)

∑
i∈C

Di

∑
j∈N

xijk ≤ Ck, k ∈ V, (7)

∑
j∈N

xojk = 1, k ∈ V, (8)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0, h ∈ C, k ∈ V, (9)

∑
i∈N

xi,n+1,k = 1, k ∈ V, (10)

xijk(sik + tij − sjk) ≤ 0, i, j ∈ N , k ∈ V, (11)∑
i∈sik<ai

(ai − sik) = tkw, k ∈ V, (12)

∑
i∈sik>bi

(sik − bi) = tkd, k ∈ V, (13)

xijk ∈ {0, 1}, i, j ∈ N , k ∈ V. (14)

Five conflicting objectives are defined in objectives (1)–(5) and optimised in pairs. The
five objectives are shown in Table 1 with the labels defined by Castro-Gutierrez et al.
(2011).

Objective Label Equation

Number of vehicles Z1 (1)
Total travel distance Z2 (2)
Makespan of tasks Z3 (3)
Total vehicle waiting time Z4 (4)
Total vehicle delay time Z5 (5)

Table 1: The objectives of the VRPSTW, posed by Castro-Gutierrez et al. (2011).

The model differs from that of Kallehauge et al. (2005) in that the adaptation for soft
time windows in (12) calculates the total time a vehicle waits for a time window to start on
a route (tkw), and (13) calculates the total delay time of customers on a route waiting for
vehicles that arrive after the close of a time window, denoted by tkd. The other constraints
follow the original model. Constraint set (6) ensures each customer is visited exactly once,
constraint set (7) is the capacity constraint and constraint set (14) ensures integrality.
Constraint sets (8), (9) and (10) ensure that each vehicle leaves the depot, arrives at a
customer and then proceeds to the next customer, and that all vehicles end at the depot.
Sub-tour elimination constraints are excluded for brevity. This model with the soft time
windows will be used as platform for further analysis.
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3 Multi-objective optimisation and the VRP

The work of a few researchers in the field of MOO and the VRP is highlighted in this
section. It is followed by a discussion of test problems in the research field.

The VRP is generally viewed as having the single objective of minimising the distance
travelled by the different vehicles. However, over the past few years the problem has
been considered as being multi-objective, with objectives including the distance travelled,
average lateness and the number of vehicles. Jozefowiez et al. (2008) review the field
of multi-objective vehicle routing problems. They identify three uses of multi-objective
vehicle routing problems: an extension of classic academic problems in order to improve
their practical applications, general classic problems and the study of real-life cases where
the decision maker identified the objectives.

Jozefowiez et al. (2008) further group the methods used to solve the multi-objective prob-
lems into scalar methods, Pareto methods and a third category that considers different
objectives separately. While it is possible to generate a weighted cost function with regard
to two of the objectives in order to use scalar methods, this would generally result in a bias
towards one of the objectives. The field of MOO has been developed to display the trade-
off between objectives in an objective way. When considering the variation of the VRP
with time windows, it appears that in the field of Pareto methods, evolutionary algorithms
are used in most cases. Tan et al. (2006) propose a hybrid multi-objective evolutionary
algorithm and Ombuki et al. (2006) use a multi-objective genetic algorithm. Geiger (2008)
states that the relaxation of the time window restriction (VRPSTW) allows for a more
practical multi-objective formulation and investigates the influence of this relaxation and
other problem characteristics on genetic operators in evolutionary algorithms. Recently
Garcia-Najera & Bullinaria (2011) proposed an improved multi-objective evolutionary al-
gorithm which uses a similarity measurement to enhance the diversity of solutions. When
compared to general evolutionary methods such as the popular NSGA-II (Deb 2001) this
method shows improvements in particular in preserving high diversity before settling on
a solution. Garcia-Najera & Bullinaria (2011) further demonstrated that 26 instances
of Solomon’s benchmark set exhibit conflicting objectives, and emphasized the use of a
Pareto front.

In addition to providing algorithms for solving the VRPTW, Solomon (1987) also devel-
oped six sets of benchmark problems that have since been used in comparing different
methods. Although the Solomon benchmark set has been extended and used in most
literature on multi-objective vehicle routing, Castro-Gutierrez et al. (2011) found that
classic test instances such as these problems developed by Solomon are not entirely suit-
able for MOO. The objectives used by Garcia-Najera & Bullinaria (2011) (the number of
vehicles and the total travel distance) were in fact found to be in harmony for most of
Solomon’s problems. The need for specific multi-objective test cases as opposed to the
extension of traditional single-objective cases came to light and a set of problem instances
were generated by Castro-Gutierrez et al. (2011) to address this need. Initial experiments
with the evolutionary algorithm NSGA-II (Deb 2001) showed evidence of multi-objective
features such as a correlation value close to −1 or 1 for a given pair of objective values.
In the case of minimisation, a correlation value close to −1 indicates a pair of objectives
with a conflicting nature, i.e. the minimisation of one objective leads to an increase in the
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other objective. The newly proposed MOO test set was studied and thus provide some ref-
erence solution sets for researchers wishing to do further work in MOO of the VRPSTW.
The MOO CEM was used, as it was recently proposed (Bekker & Aldrich 2010). Castro-
Gutierrez et al. (2011) identified five objectives to be used in vehicle routing (see Table
1): the number of vehicles (Z1), the total travel distance (Z2), the makespan (travel time
of longest route) (Z3), the total waiting time when vehicles arrive before the time window
(Z4) and the total delay time when vehicles arrive after the time window (Z5).

4 Combinatorial optimisation and the cross-entropy method

Combinatorial optimisation refers to a problem where the decision maker seeks the com-
bination of integer variable values that will optimise the objective function. Due to the
combinatorial nature of the VRP, it is clear that the computational complexity of the
problem increases as the number of vertices increases. The CEM is presented as being
able to find a good local minimum for such a combinatorial optimisation problem. Ru-
binstein & Kroese (2004) devotes a chapter to the travelling salesperson problem (TSP).
De Boer et al. (2005) also use the TSP as an example when illustrating the application
of importance sampling to combinatorial optimisation. When comparing the CEM to
other algorithms for combinatorial optimisation (simulated annealing, nested partition-
ing, tabu search, genetic algorithms), Rubinstein (1999) states that the CEM employs a
global rather than a local search procedure. The interested reader is referred to Rubinstein
& Kroese (2004) and Bekker & Aldrich (2010) for the mathematics supporting the CEM.
A few basic concepts from the discrete case are repeated here for convenience (Rubinstein
& Kroese 2004).

Let x ∈ X be a random vector with probability mass function f(·,u) and distribution
parameter vector u. Suppose a problem has a performance function S(x) with x ∈ X
then the optimisation problem is

maximise S(x) over x ∈ X , (15)

while its estimation formulation is to

maximise Ŝ(x) over x ∈ X . (16)

Suppose the maximum of S over X is γ∗, then

S(x∗) = γ∗ = max
x∈X

S(x). (17)

The CEM requires that an estimation problem be associated with the optimisation problem
of equation (17), and a collection of indicator functions {I{S(x)≥γ}} are defined on X for
different values of γ ∈ R. Let {f(·,v),v ∈ V} be a family of probability mass functions
(pmfs) on X that are parameterised by a real-value vector v.

To solve the problem associated with equation (17), assume u ∈ V and estimate the
probability

l = Pu{S(X) ≥ γ} =
∑
x∈X

I{S(x)≥γ}f(x;u) = EuI{S(X)≥γ} (18)
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with f(x;u) being the pmf on X and γ some chosen level. Suppose now γ is equal
to γ∗, then l = f(x∗;u), which is a very small probability, and with this is associated
a rare event. The probability can be estimated with the variance reduction technique of
Importance Sampling (Rubinstein & Kroese 2004) by taking a random sampleX1, . . . ,XN

from a different pmf g and estimate l via

l̂ =
1

N

N∑
k=1

I{S(Xk)≥γ}
f(Xk;u)

g(Xk)
, (19)

which is the unbiased importance sampling estimator of l. The distribution g(·) is in-
troduced to make the probability of event l occurring less rare. The optimal manner to
estimate l is to use the change of measure with a different pmf, namely

g∗(x) :=
I{S(x)≥γ}f(x;u)

l
. (20)

Since this optimal pmf is generally difficult to obtain and depends on the unknown l, one
approximates it by choosing g such that the cross-entropy or Kullback-Leibler distance
between g and g∗ is minimal. The Kullback-Leibler distance between two pmfs g and h is
defined as

D(g, h) = Eg
[
log

g(X)

h(X)

]
(21)

=
∑
x

g(x) log g(x)−
∑
x

g(x) log h(x). (22)

Since I{S(x)≥γ} is non-negative, and the pmf f (of X) is parameterised by a finite di-
mensional vector v, i.e. f(x) = f(x;v), g(x) = f(x;v) for some reference parameter v
(Kroese 2010). To estimate l with equation (19), v is chosen such that D(g∗, f(·; ṽ)) is
minimal.

For discrete random vectors X the components of ṽ will always be of the form (Alon et
al. 2005)

EvI{S(X)≥γ}I{X∈A}

EvI{S(X)≥γ}I{X∈B}
(23)

with A ⊂ B ⊂ X . This number can be estimated by taking a random sample X1, . . . ,XN

from the pmf f(·,v) and evaluate

∑N
k=1 I{S(Xk)≥γ}I{Xk∈A}∑N
k=1 I{S(Xk)≥γ}I{Xk∈B}

. (24)

In the case of combinatorial optimisation problems such as the TSP and VRP, the prob-
ability distribution used in the importance sampling step is supported by a transition
probability matrix. A matrix P is generated so that the probability of going from city i
to city j is represented as pij . The method starts with equal probabilities in the matrix,
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which are updated according to the routes in the current best solution set. This is defined
by De Boer et al. (2005), in the case of the travelling salesperson problem, as

pij =

∑N
l=1 I{S(Xl)≤γ}I{Xl∈Xij}∑N

l=1 I{S(Xl)≤γ}
. (25)

The estimated value for γ is obtained by creating a random sample of possible tours with
evaluated objective function values. These values are then ranked to estimate a sample
upper quantile, for example γ̂ = S%N (Xi) and typically, 0.70 ≤ % ≤ 0.95. The target event
to be estimated by the method is denoted by S(X l) ≤ γ in the case of minimisation (De
Boer et al. 2005). In equation (25), the probability of visiting city j (the jth success)
is updated by counting the solutions in the current set of good solutions (X l ≤ γ) with
X l ∈ Xij , where Xij is the set of matrices where the transition from i to j is made (xij = 1),
in all the tours (l) generated as a population of size N in an iteration. In equation (25),
only routes with a performance value less than γ are considered. Rubinstein & Kroese
(2004) recommend that the updated matrix P be smoothed to help prevent premature
convergence, using Pt ← αPt + (1− α)Pt−1, 0 < α < 1.

The CE algorithm for optimisation of the VRP is based on Rubinstein & Kroese (2004),
and is as follows.

1. Initialise the transition matrix P̂0. Typically, off-diagonal elements are assigned the
value 1/(n+ 1) for n vertices. Initialise the iteration counter t← 1.

2. Generate a sample of tours by some method using Pt−1.

3. Compute the estimation γ̂t = S%N (Xi) from the sample performances.

4. Update P̂t using equation (25) and the results of the previous step.

5. Apply smoothing: P̂t ← αP̂t + (1− α)P̂t−1.

6. If γ̂t has converged, stop, otherwise t← t = 1 and go to Step 2.

Bekker & Aldrich (2010) adapted the CEM for MOO and tests on benchmark problems
showed satisfactory results as approximations of the true Pareto sets were obtained with a
relatively low number of simulations. The method was applied to deterministic, continuous
problems and discrete, stochastic problems. In this study, the applicability of the method
on discrete combinatorial problems is considered by maintaining the core mechanism of
the CEM. The multi-objective model formulation is explained in §5.

The expression in equation (25) is applicable to the single-objective optimisation as applied
by Rubinstein & Kroese (2004) and De Boer et al. (2005) with the set of best solutions
(the elite set) defined as instances with a objective function value (S(X l)) smaller than
γ. The ranking of the elite set in the case of MOO as proposed by Bekker & Aldrich
(2010) and the subsequent construction of the probability matrix as used in this study are
explained in §5 with the formulation of the optimisation model.

Ma (2011) succesfully applied the CEM for single-objective optimisation to the VRPTW.
A multi-agent environment was introduced where a vehicle-specific transition matrix is
associated with each node of the network that is used to construct a feasible route for
every vehicle (the agents in this case). It is this transition matrix that is constructed
using a random mechanism. It is then updated according to the performance of the routes
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travelled by the vehicles, in effect increasing the probability of estimating the rare event
of an optimum solution. The proposed method employs the same principle, but uses a
general transition matrix to construct routes for all the vehicles.

Ma (2011) further proposed a local search procedure on a subset of good solutions to avoid
premature convergence by the CEM. The results on classic MOO test-instances by Bekker
& Aldrich (2010) suggest that this is not necessary, but further research can investigate
the influence of a local search procedure on the proposed multi-objective method in vehicle
routing.

Chepuri & Homem-de-Mello (2005) applied the CEM with Monte Carlo sampling to the
VRP with stochastic demand, using one vehicle. Generally, in this type of problem, there
is variation in the set of customers visited, the demands and the travel times. Their appli-
cation does not completely depend on specific problem formulations and can be extended
to using multiple vehicles.

The applications of the CEM to the VRP are all based on single-objective optimisation.
A MOO application using the CEM is presented next.

5 Model formulation

The VRPSTW consists of a network of customers at different locations indicated by coor-
dinates, distances and travel times between customers and a central depot from which a
homogenous fleet of vehicles depart. The solution consists of a list of the routes travelled
by the different vehicles, usually illustrated by the order in which vertices are visited. The
problem was modelled with the following data structures: customer detail, distance and
travel time between pairs of customers, and the proposed routes (candidate solutions).

The pseudo-code for the MOO CEM for solving the VRPSTW is shown in Algorithm 1,
and the structure of the optimisation model is shown in Figure 1. An initial probability
matrix (P ) with equal probabilities is defined to start the process. The probabilities are
then used to construct routes in order to obtain a set of N solutions, with q the identifier
(index) of the particular set of routes. This construction of routes and normalisation
of the probability matrix is summarised in Algorithm 2. The solutions obtained in this
manner are then evaluated and values are assigned to the pair of objectives being studied
(in Figure 1, for Z1 and Z2). The solutions were ranked using the algorithm of Goldberg
(1989), and the ranking value is stored in ρq. The degree of domination of one vector
relative to the other vectors in the solution set is indicated by this value. All vectors with
ρq ≤ th after ranking of an iteration are weakly dominated and form part of the elite set
of that iteration. The value of th is a preset threshold value, typically 0 ≤ th ≤ 2. If
th > 0, then weakly and non-dominated vectors are returned in the elite set. If th = 0,
then only non-dominated vectors are added to the elite set. This elite set of solutions is
used to obtain the updated probability matrix as defined by (25) and explained in §4. The
expression in equation (25) is adapted to

pij =

∑N
q=1 I{ρq=0}I{xij=1}∑N

q=1 I{ρq=0}

, (26)
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Figure 1: A schematic representation of the structure of the optimisation model.

to allow for the multi-objective case shown. Indicator values for every solution (q) with
a number of routes (k) are summed in the population (N) as opposed to equation (25)
where a solution consisted of one tour. This process is iterated until the stopping criterion
is met.

Expression (26) can be explained with reference to Figure 1. Suppose the solutions with
indices 1, 2 and N are the three solutions of the elite. The denominator will be equal to 3,
while the various xij must be considered in the numerator. It can be seen that x09 occurs
in all three solutions, so p09 = 3/3 = 1, but p02 occurs in two of the three solutions, so
p02 = 2/3.

The algorithm applied to the vehicle routing problem with time windows is illustrated in
Algorithm 1, and is based on Bekker & Aldrich (2010).

For the purpose of Algorithm 1 it is important to note that a rank of 0 denotes non-
domination and accordingly the best solutions of the current set. The loop of lines 6 to 13
retains solutions with a rank of 2 to maintain solution diversity and to prohibit premature
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Algorithm 1: MOO VRPSTW with the CEM

1 Let P be the transition matrix of probabilities, Nm the maximum number of loops, τ the maximum
number of evaluations per loop and µ the set of averages of the objectives in the elite set;

2 Lc ← 0;
3 repeat
4 t← 0;
5 Initialise Pt and µt;
6 repeat
7 t← t+ 1;
8 Construct routes using Algorithm 2 and Pt;
9 Evaluate routes;

10 Rank the solutions using the threshold th = 2;
11 Update Pt using equation (26);
12 Smooth Pt ← αPt + (1− α)Pt−1;

13 until |µt − µt−1| ≤ ε or t ≥ τ ;
14 Rank with th = 1;
15 Lc ← Lc + 1;

16 until Lc > Nm;
17 Rank with th = 0;
18 return [elite set];

convergence. The non-dominated solutions are only isolated at the end of the algorithm,
in line 17.

In principle, routes are constructed with Markov-chain transition probabilities but in re-
ality the VRP is highly constrained and routes are dependent on the feasibility of said
transition. Algorithm 2 ensures that the transition to non-feasible vertices is not possible
by setting the transition probability to 0 and normalising the remaining probabilities. The
matrix with transition probabilities is updated according to feasible vertices to be visited.
From the array of feasible cities the next city to be visited is visited according to the row
of P .

6 Methods and results

The algorithm for the CEM was coded in MATLAB 7.10 and applied to the different
benchmark instances of Castro-Gutierrez et al. (2011).

6.1 Benchmark problems

Castro-Gutierrez et al. (2011) generated a benchmark problem set that may be used for
the multi-objective VRPSTW. The time windows and the demands of the customers are
characterised in a certain way. The problems are characterised with the number of cus-
tomers, the different time window profiles (0–4, 4 being the tightest) and capacity and/or
demand constraints (0–2, 2 being the tightest). Each problem has a specific label, for exam-
ple, “50 d0 tw1” denotes the benchmark problem with 50 customers, a demand/capacity
profile number 0 and time window profile 1. Six pairs of objectives (from the five de-
fined in Table 1) were found to be conflicting in the datasets for soft time windows,
namely (Z1, Z3), (Z1, Z5), (Z2, Z3), (Z2, Z5), (Z4, Z3) and (Z4, Z5) (Castro-Gutierrez et
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Algorithm 2: Construction of routes of the VRPSTW

1 Let depot be customer i+ 1 (next customer);
2 while all customers are not visited do
3 Previous customer i = Customer i+ 1;
4 for all customers not yet visited do
5 feas1 ← (capacity of truck);
6 feas2 ← (time window (in the case of hard time windows));
7 feas3 ← (vehicle is back at the depot in time);
8 Feasible ← feas1 and feas2 and feas3;
9 if Not Feasible then

10 Change probability to be visited from current customer to 0;

11 if No customers are feasible then
12 The next customer is the depot;
13 Increment routes k ← k + 1;
14 return to Step 2;

15 else
16 Calculate the new weighted row of the probability matrix;
17 Sample a customer from this row;
18 Add this customer to the route as customer (i+ 1);

al. 2011). These objectives are used in the application of the MOO CEM. Instances with
negative correlation values (close to −1) for all pairs of objectives were used, i.e. for all de-
mand/capacity profiles and for the time window profiles (1–4) as the time window profile
0 only exhibits a time window for the depot and the problem reduces to a general VRP
(no waiting time or delay time).

6.2 Performance measures

The hypervolume comparison method yields a recognised unary indicator used in compar-
ing two different Pareto sets in order to assess the difference in quality of two algorithms.
A unary indicator in this context is a function that returns a single, real value from the set
R. The hypervolume indicator (IH) is also the only unary indicator capable of detecting
that a set of solutions is not worse than another (Zitzler et al. 2003, Raad et al. 2011).
This indicator is used to isolate the best result of 10 pseudo-independent tests of the MOO
CEM for the VRP. To show the general performance of the method, the highest, lowest
and average values for IH are documented for the 10 runs. Since pairs of objectives are
considered in this study, the hyperarea indicator instead of the hypervolume indicator is
used.

The indicator values of all problem sets on which the algorithm was tested are shown in
Table 2. It is important to note that due to the difference in the order of the objectives,
the hyperarea is a relational indicator, i.e. a high value in one column is incomparable to
the seemingly lower value in another column. It is also interesting to note that in some
cases (especially in the Z1 and Z5 pairing) the hyperarea indicator is equal to 0 for all the
documented indicator values of particular problem cases. This shows that the algorithm
performed the same for all 10 runs as there was no difference in the hyperarea of the final
approximate Pareto fronts. This is applicable to discrete cases such as the number of
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vehicles (Z1) and in the case of Z4 and Z5 when an optimal solution (such as delay time
= 0 or waiting time = 0) is found in all 10 iterations. In these cases the movement of the
second objective is irrelevant as the hyperarea indicator depends on an area, and here the
extreme point of this objective forms a line with the secondary objective, thus resulting in
an indicator value of 0. Variances higher than 0.5 are indicative of answers that did not
exhibit a final multi-objective front (i.e. one optimal point) but the best iteration provided
a solution better than the other iterations, resulting in a large variation in the hyperarea
indicator value.

6.3 Parameter setting

One objective of the research is to determine if the MOO CEM can, in general, be used
for the VRPSTW, so the fine-tuning of parameters is not the main focus. However, before
tests were performed on the benchmark problems, experiments were conducted to get an
indication of good parameter values. The main parameters that influence results include
the population size N , the smoothing parameter value of α, and lastly the maximum
allowed number of iterations (τ and Nm), as explained in Algorithm 1.

A number of experimental tests were conducted and the averages of the IH indicator of
five runs were computed from a common reference. In Figure 2 the population size was
set at N = 2 000 and the average IH of five runs at different values of α showed α = 0.9
performed the best. In Figure 2, the value of α = 0.8 was set while different values of
N were tested. The difference in the indicator values for N = 2 000 and N = 2 500
was deemed not large enough to warrant the increase in computational time associated
with N = 2 500. Following these experiments and due to time considerations, tests were
conducted with parameters set to N = 2 000, α = 0.9, τ = 25 and Nm = 10.
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Figure 2: Variation of IH for different values of α and N , respectively.

6.4 Results

Tests were performed on all cases of the 50 customer problems with conflicting objec-
tives, but this paper addresses only one problem instance in detail in this section, namely



32 C Hauman & JF Bekker

Test instance Z1-Z3 Z1-Z5 Z2-Z3 Z2-Z5 Z4-Z3 Z4-Z5

50 d0 tw1 best 2160 25380 413334 3857736 69721200 0
average 1704 4716 375580.8 2645854 62858160 0
worst 1380 0 343026 1641396 53330400 0

50 d0 tw2 best 3120 0 287310 1030632 88077600 291600
average 2964 0 258177 621264.6 80239680 150120
worst 2820 0 230874 63354 73411200 0

50 d0 tw3 best 300 0 477456 21774401 11361600 2.21E+08
average 258 0 402969.6 19475492 9065880 1.58E+08
worst 240 0 320574 18388050 6595200 87138000

50 d0 tw4 best 3780 158880 229692 61954032 89737200 89737200
average 3258 137802 194004.6 53912637 81240840 79200720
worst 2760 99420 158562 48499344 63478800 35424000

50 d1 tw1 best 3000 17160 443322 1810542 58820400 0
average 2730 5148 386695.8 1297729 50774040 0
worst 2520 0 317346 948810 43167600 0

50 d1 tw2 best 1740 0 235548 2880042 86929200 0
average 1560 0 188147.4 1557728 78718680 0
worst 1440 0 148326 268500 72554400 0

50 d1 tw3 best 1080 0 366858 25042092 18925200 2.55E+08
average 768 0 324304.2 24065212 16047360 2E+08
worst 540 0 268722 23141700 12146400 1.22E+08

50 d1 tw4 best 2460 20340 687600 5750988 75999600 1.66E+08
average 2094 11178 576431.4 3960852 70805880 1.55E+08
worst 1680 0 496482 2033028 61135200 94795200

50 d2 tw1 best 0 123060 831528 13276242 59760000 61689600
average 0 122784 694749.6 10267123 49678920 33022080
worst 0 120300 594426 8175126 36532800 0

50 d2 tw2 best 2640 0 713970 3056874 66567600 284400
average 2484 0 630510 2398305 59207760 145440
worst 2220 0 551298 1336314 44132400 0

50 d2 tw3 best 420 87360 490368 57652992 7732800 25596000
average 342 87096 458721 49416319 5318280 15331680
worst 240 86040 376998 51309015 2350800 0

50 d2 tw4 best 2400 0 963108 2949780 82825200 14742000
average 2226 0 900396 1458745 50275080 5660280
worst 2100 0 821442 600840 29865600 0

250 d2 tw1 best 600 1033920 107118 4.72E+08 11491200 2.7143E+10
average 252 845604 79979.4 4.09E+08 8209800 1.8608E+10
worst 60 599640 53874 3.55E+08 4946400 1.3184E+10

250 d2 tw2 best 540 1029300 227088 4.9E+08 24958800 3.4807E+10
average 276 820344 173223 4.44E+08 17012880 2.7858E+10
worst 120 688980 112242 3.96E+08 10735200 2.3874E+10

250 d2 tw3 best 180 1173840 31140 5.1E+08 3661200 2.2704E+10
average 96 944016 17226.6 4.87E+08 1946880 1.7887E+10
worst 0 775740 0 4.54E+08 0 1.3895E+10

250 d2 tw4 best 420 1485540 89472 4.08E+08 25833600 2.5134E+10
average 173.3 1281972 61505.33 3.82E+08 17179560 2.2787E+10
worst 60 1072440 41910 3.34E+08 9165600 2.0649E+10

Table 2: Hyperarea values of test problem results.
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50 d1 tw4. This problem instance is chosen as a fair representation of results found across
the different demand and time windows, and serves as a good platform to discuss the
performance of the algorithm and the findings of the study.

The results are shown in subsequent figures, as follows: for each of the conflicting pairs
of objectives, a figure showing the progression of the approximation front through the
iterations (or loops) as explained in Algorithm 1 is presented (see e.g. Figure 3(a)). This
serves as indicator of the worth of the CEM, as results improve from the completely
random construction of routes in iteration 1 to the final approximation front formed in
iteration 10. Figure 3(b) shows the final approximation front in the objective domain as
presented to the decision maker. Lastly, a table showing the routes for the set of vehicles
(Vk) of a particular solution point from the final approximation front, is presented. The
tables (Tables 3 – 5) list the reference numbers of the customers in the order that they
were visited by each vehicle. These numbers follow from Castro-Gutierrez et al. (2011).
In Table 3, for example, it is shown that six vehicles were used, and vehicle number 1 (V 1)
visited eight customers. Also, there are exactly 50 non-zero labels in the table, and the
label sets represented by each column are mutually exclusive. Solutions not listed may be
obtained from the corresponding author.
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Figure 3: Front progression and the final Pareto-front of test instance 50 d1 tw4 for Z1 vs Z3,

respectively.

6.5 Discussion of results

For all six cases the progression of the approximation front is evident and the worth of the
CEM of estimating good solutions is illustrated. In the case of the discrete objective Z1,
the number of vehicles, Figures 3 and 4 show approximate Pareto fronts that are limited in
their multi-objective nature and exhibit seemingly redundant points at the lowest number
of vehicles. As this is only evident in the case of the discrete objective, it can be deduced
that the algorithm found a number of solutions for Z3 for the same value of Z1, and
cannot justify fewer or more values for Z1, as no points between discrete values can be
obtained. In Figure 3 for example, one can see that using six vehicles in this problem
yield a number of makespan values, of which 27 660 time units is the least (Point A). The
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Figure 4: Front progression and the final Pareto front of test instance 50 d1 tw4 for Z1 vs Z5,

respectively.

V1 V2 V3 V4 V5 V6

0 0 0 0 0 0
649 1 725 2 000 1 173 2 104 1 870

1 384 856 430 148 430 030 1 714 2 107
430 761 1 888 1 897 1 703 430 378 1 777

2 044 1 362 1 813 1 781 948 1 203
2 121 1 678 1 463 669 430 625 1 389
2 149 2 073 486 2 003 0 1 875

430 804 1 588 1 509 0 974
482 1 686 661 1 235

0 2 152 907 2 138
106 430 471 0

0 1 721
2 007

0

V1 V2 V3 V4 V5

0 0 0 0 0
2 104 1 813 1 173 649 1 870

856 1 725 1 384 2 107 1 777
1 888 1 897 1 714 907 1 203

430 148 1 678 430 378 2 073 1 703
1 463 430 030 2 044 486 1 389
1588 974 1 875 1 509 669
106 430 761 1 235 1 686 482
661 1 781 2 121 2 152 0

430 471 2 149 2 138 1 362
2 000 430 804 0 1 721

430 625 2 003 0
2 007 0

948
0

Table 3: Routes of solutions A and B, respectively, for the problem 50 d1 tw4 (Z1 vs Z5).

makespan can be reduced to 27 480 time units if the decision maker is willing to buy seven
vehicles. In Figure 4, the best solution is shown by Point B, where the delay time is zero
when using five vehicles.

Although Figure 8 exhibits a single-point solution (which is strictly not Pareto anymore),
Figure 8 illustrates that the non-optimal solutions are inherently multi-objective. The
progression of the front to an optimal (the best combination for Z4 and Z5 is 0) is good,
and the multi-objective nature of the objective pair is not refuted.

It is also valuable to note that in Figure 6 and to a lesser extent Figures 5, 7 and 8, the
spread of the front becomes smaller as the algorithm progresses, and tends to converge to a
limited region. This supports the finding that the number of loops (10) is adequate. If time
permits, more outer loops may be added, but this would only lead to small improvements
in the front. This choice is thus left to the decision maker, i.e. to what extent priority is
given to the execution time of the algorithm or to the precision of the solution.
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Figure 5: The front progression and the final approximation front of test instance 50 d1 tw4

for Z2 vs Z3, respectively.
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Figure 6: The front progression and the final approximation front of test instance 50 d1 tw4

for Z2 vs Z5, respectively.

The set of problems with the tightest capacity profile (250 d2 tw1), in the 250-customer
problem, was computed to investigate the feasibility of the CEM for multi-objective vehicle
routing on larger scale problems. The method proved to be able to solve these problems
and results showed similiar characteristics to that of the 50-customer problems. The
biggest difference can be seen in Figure 9: in the 250 d2 problem objective Z3 exhibited
the same behaviour as that of the discrete objective Z1, the number of vehicles. This is
due to the nature of the problem and time windows, limiting the makespan of the longest
route to a fixed number of possibilities. Figure 10 serves as an example of the Z4 and
Z5 pairing, exhibiting a multi-objective approximation front as also found in the other
non-documented 50-customer problems.

MOO is generally descriptive and not prescriptive, and the decision maker still has to
choose a solution for implementation from the approximation set. In the results set pre-
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V1 V2 V3 V4 V5 V6

0 0 0 0 0 0
1 813 1 714 1 588 430 378 430 471 1 725
2 104 649 430 761 856 1 721 1 870
1 173 430 030 2 107 907 2 152 1 389
1 384 1 703 974 486 430 625 2 044
1 678 1 777 1 781 1 509 0 2 121

661 1 203 430 804 948 1 875
106 2 138 482 2 007 1 235

2 073 0 0 1 463 2 149
1 897 0 669
2 000 2 003
1 362 0
1 686

430 148
1 888

0

V1 V2 V3 V4 V5 V6

0 0 0 0 0 0
1 725 1 870 1 714 2 104 856 1 588
2 107 2 044 430 378 1 813 1 173 1 463

430 761 2 121 106 1 384 649 2 073
1 781 1 389 661 1 897 430 030 430 625

669 1 235 486 1 888 1 703 2 000
482 1 875 907 430 148 1 777 0

0 974 1 509 1 686 1 203
2 149 1 678 2 152 2 138

430 804 2 007 1 721 0
2 003 948 1 362

0 430 471 0
0

Table 4: Routes of solutions C and D, respectively, for test instance 50 d1 tw4 (Z2 vs Z5).
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Figure 7: The front progression and the final approximation front of test instance 50 d1 tw4

for Z4 vs Z3, respectively.
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Figure 8: The front progression and the final approximation front of test instance 50 d1 tw4

for Z4 vs Z5, respectively.
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V1 V2 V3 V4 V5 V6

0 0 0 0 0 0
2 107 2 104 1 725 1 777 649 1 870
1 897 430 378 1 888 2 000 1 714 430 030
1 703 2 121 974 2 044 1 678 1 389
1 235 907 1 588 1 686 1 362 1 509
2 149 856 1 781 2 152 1 384 1 721

430 804 669 2 138 106 486 430 625
482 2 003 0 0 2 073 430 471

0 0 948 0
661

2 007
1 463

0

V1 V2 V3 V4 V5 V6

0 0 0 0 0 0
649 2 107 1 725 1 870 1 897 1 173

430378 1 777 1 384 2 000 1 813 856
1203 106 2 104 1 875 1 714 1 888
661 1 463 1 703 2 044 430 030 430 761

2149 1 509 1 588 2 121 974 1 235
430471 907 669 1 686 1 389 2 073
430625 486 2 003 2 152 1 721 430 148

0 1 781 0 1 362 2 007 2 138
430 804 0 948 0

482 1 678
0 0

Table 5: Routes of solutions E and F , respectively, for test instance 50 d1 tw4 (Z4 vs Z3).
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Figure 9: The front progression and the final approximation front of test instance 250 d2 tw1

for Z2 vs Z3, respectively.

sented it is in some cases easy to choose a solution (Figures 4 and 8), but in other cases
additional business constraints will be required to support a choice. In Figure 4, six or
seven vehicles can be bought; if finances are limited, then six vehicles are indicated, but
the makespan is penalised. In Figure 6, suppose the business wants to limit travel distance
due to high fuel cost, then solutions in the upper left region should be considered. Now the
total delay time increases, while a good trade-off solution is perhaps indicated by Point D.

The discussion of the results is concluded with Figure 11 illustrating the nature of the
routes on a coordinate map with the depot at (28.0718,−16.622). The complex nature
of the multi-objective VRPSTW is illustrated since a comparison of different objectives
yields completely different routing solutions. Figures 12 and 13 are an illustration of the
routes of one solution of the 250 d2 tw1 problem for objectives Z4 vs Z5. The solution
consisted of 37 routes which are displayed over four figures of nine or ten routes each to
provide clarity.
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Figure 10: The front progression and the final approximation front of test instance 250 d2 tw1

for Z4 vs Z5, respectively.
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Figure 11: Map of routes of solution A and F , respectively, for test instance 50 d1 tw4 for Z1

vs Z3.
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Figure 12: Map of routes of solution G, Part 1 and Part 2, respectively, for test instance

250 d2 tw1 for Z4 vs Z5.
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Figure 13: Map of routes of solution G, Part 3 and 4, respectively, for test instance 250 d2 tw1

for Z4 vs Z5.

7 Summary and conclusions

The first aim of this paper was to assess the possible application of the CEM for MOO to
the multi-objective vehicle routing problem with soft time windows. It was found that the
MOO CEM adequately obtains an approximation set that progresses towards the Pareto
front of solutions for conflicting objectives of a given problem. Some of the benchmark
problems converged to a final solution consisting of a single point in the objective space
even though it initially consisted of a front of solutions.

The speed performance of the MOO CEM itself proved good but the route-construction
algorithm (as explained in §2) is a definite bottleneck. Future work should look at stream-
lining the construction of routes with a transition probability matrix as required by the
CEM.

Reference sets of solutions for MOO of VRPs with soft time windows are also provided
that OR practitioners may use and improve upon.

Future work might assess the applicability of other metaheuristics to the Gutierrez et al.
(2011) problem set, and to compare the performance of these algorithms.
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