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Abstract

The availability of irrigation water greatly impacts on the profitability of the agri-
cultural sector in South Africa and is largely determined by prudent decisions related
to water release strategies at open-air irrigation reservoirs. The selection of such
release strategies is difficult, since the objectives that should be pursued are not gen-
erally agreed upon and unpredictable weather patterns cause reservoir inflows to vary
substantially between hydrological years. In this paper, a decision support system is
proposed for the selection of suitable water release strategies. The system is based
on a mathematical model which generates a probability distribution of the reservoir
volume at the end of a hydrological year based on historical reservoir inflows. A
release strategy is then computed which centres the expected hydrological year-end
reservoir volume on some user-specified target value subject to user-specified weight
factors representing demand satisfaction importance during the various decision peri-
ods of the hydrological year. The probability of water shortage for a given year-end
transition volume may be determined by the decision support system, which allows
for the computation of acceptable trade-off decisions between the fulfilment of current
demand and the future repeatability of a release strategy. The system is implemented
as a computerised concept demonstrator which is validated in a special case study
involving Keerom Dam, an open-air reservoir in the Nuy agricultural district near
Worcester in the South African Western Cape. The system’s strategy suggestions are
compared to historically employed strategies and the suggested strategies are found
to fare better in maintaining reservoir storage levels whilst still fulfilling irrigation
demands.
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1 Introduction

South Africa is classified as a semi-arid, water-stressed region, with an average annual
rainfall of 450 mm — almost half the global average of 860 mm [21]. The limited and
erratic water supply resulting from precipitation necessitates irrigation in most instances
of crop farming. Open-air reservoirs are most commonly used to store irrigation water
in South Africa, because precipitation periods and river flows are dynamic, in some cases
volatile and not necessarily overlapping with demand periods. There are approximately
1.3 million hectares of agricultural land under irrigation in South Africa and agriculture
accounts for roughly fifty percent of South Africa’s total annual water usage [21].

If irrigation reservoir levels are not carefully controlled, water shortages or flood damage
may occur downstream from the reservoirs with disastrous effects for farmers in the re-
gion. An effective release strategy must therefore be employed for beneficial reservoir level
control. A suitable choice of irrigation reservoir release strategy is, however, not obvious
for a number of reasons. The objectives that should be pursued by such a strategy are
not generally agreed upon. Irrigation demands should obviously be met, while the risk of
water shortage and/or the risk of flood damage may be minimised, or evaporation losses
may be minimised. Unpredictable weather patterns furthermore cause reservoir annual
inflows to vary substantially, thus making planning and water allocation exceedingly dif-
ficult. The determination of irrigation demand is also a non-trivial problem, which is
influenced by the climate as well as the distribution of crop types under irrigation and
various agricultural policies. Finally, the decision makers responsible for the selection of a
release strategy may differ vastly in their attitude toward risk, which plays a critical role
in the selection of a consensus strategy.

The problem considered in this paper is the design and implementation of a user-friendly,
computerised decision support system (DSS) which may aid the operators of an open-air
irrigation reservoir in deciding upon a suitable water release strategy. This DSS provides a
means for the effective comparison of different water release strategies through quantitative
performance metrics and is also capable of suggesting a strategy which best achieves user-
specified levels of these performance metrics. The DSS put forward in this paper relies
on a mathematical modelling framework, previously suggested by van der Walt and van
Vuuren [24]. This framework accommodates trade-off decisions between the fulfilment of
demand and future strategy repeatability. These trade-offs are accomplished by balancing
the conflicting objectives of maximising the fulfilment of irrigation demand (and hence
reservoir releases), whilst simultaneously minimising the risk of water shortage, within
certain specified legal and environmental constraints.

The paper is organised as follows. A concise review of the literature related to the notion
of reservoir release strategy formulation is presented in §2, after which the mathematical
modelling framework for reservoir releases of van der Walt and van Vuuren [24] is briefly
reviewed in §3. A novel computerised DSS, based on the framework of §3, is described in
§4 and then applied in §5 to a special case study involving Keerom Dam, a large open-
air irrigation reservoir in the South African Western Cape. The working of the DSS is,
however, generic and its potential use at other irrigation reservoirs may hold significant
benefit in view of its successful application in the case of Keerom Dam. The paper finally
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closes in §6 with a brief appraisal of the contribution and some ideas with respect to
possible follow-up future work.

2 Literature review

In the first section of this literature review, we describe a number of methods available
for meteorological data prediction, after which the focus turns in §2.2 to approaches avail-
able in the literature for calculating irrigation demand. The review closes in §2.3 with a
description of the methods available for evaporation estimation and modelling as well as
an overview in §2.4 of DSSs previously established for open-air reservoir control.

2.1 Meteorological prediction and generation models

Precipitation in the catchment area of a reservoir and the resulting inflows into the reser-
voir are the most volatile and unpredictable variables in the reservoir sluice control prob-
lem under consideration. While extensive research has been devoted to weather prediction,
long-term weather patterns remain largely unpredictable [9]. As a result, weather gener-
ators are often used to simulate volatile weather conditions exhibiting seemingly random
behaviour when the effects of weather patterns have to be studied. Most weather genera-
tors have been developed for the study of precipitation, because of the far reaching effects
of rainfall on many environmental processes [27].

According to Wilks and Wilby [27], most weather generators are based on the assumption
that the precipitation volumes on consecutive wet days are independent. The Monte
Carlo simulation method, which is often used in such weather generators, consists of using
a pseudo-random number generator in conjunction with a precipitation distribution curve,
fitted to historical data, in order to generate random precipitation amounts.

It has, however, been observed that wet and dry days do not occur randomly and inde-
pendently, but that they rather tend to cluster together in wet or dry spells [27]. Dry
spells cause a discontinuity in the precipitation distribution and thus cannot be modelled
adequately using only the procedure described above. The occurrence of a wet or dry spell
may be simulated effectively as a Markov chain. Once the state of a day has been simu-
lated (wet or dry), the precipitation amount associated with a wet day may be simulated
using the Monte Carlo method.

If the flows of a river are to be modelled using the Monte Carlo method, it is unnecessary
to embed a Markov chain in the simulation, however, since there are no corresponding
discontinuities in the flow distributions. The effects of discontinuous precipitation are
instead absorbed by the gradual water flows in the catchment area and are also lessened
by other sources of water, such as water springs or smaller rivers.

Successful river flow predictions have been achieved by standard time series modelling, as
described by Box and Jenkins [2]. Artificial neural networks have also been employed for
this purpose, achieving greater accuracies than time series modelling in some cases [8].

The choice between a generation or prediction approach to reservoir inflows may have a
significant impact on the usefulness of the DSS put forward in this paper. Time series and
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artificial neural network prediction models rely on the assumption that the immediate
future behaviour of the system depends more sensitively on recent historical behaviour
than on non-recent historical behaviour. While this may prove true for short-term predic-
tions (a small number of days for general weather prediction), it remains inaccurate over
annual predictions [9]. Using prediction models in the DSS put forward in this paper may
therefore result in overly optimistic strategy suggestions.

2.2 Irrigation demand calculation

The calculation of crop irrigation demand is an important constituent part of the proposed
solution to the problem under consideration in this paper. It is essential to be able
to forecast irrigation demand, at least annually, for planning purposes. Several factors
may influence the irrigation demand on a farm, depending on the calculation method
used. Irrigation demand may be estimated from an economic point of view, taking into
account water cost, crop yields and cost-benefit trade-offs. This approach to deriving
irrigation demand may be adopted in conjunction with statistical estimation methods or
programming models, as described by Bontemps and Couture [1]. The use of statistical
estimation methods for deriving irrigation water demand results in inelastic water demand
profiles. The reason for this may be a lack of data on crop-level water use [1]. When
using programming models, however, inelastic demand profiles result only below a certain
threshold water price.

In the DSS proposed here, a fixed (inelastic) demand profile is assumed as input to serve
as a fixed reference point for performance measures in the model. This profile serves the
dual purpose of being the primary input in the selection of an initial water release strategy
(which is improved iteratively by the DSS), and as a measure of how well demand is met
by comparing the actual reservoir outflows to this demand profile. Therefore, the demand
profile employed in this study should ideally reflect crop needs, irrespective of water price.
It is envisaged that the model developed here may ultimately be used in an economic
benefit study, instead of incorporating the cost-benefit analysis in the demand calculation.

According to Willis and Whittlesey [26], a farmer’s risk appetite determines the degree to
which his preferred irrigation policy exceeds the net irrigation requirements of his crops.
There is a cost associated with this over-allocation of water, referred to as a self-protection
cost. An analysis of each farmer’s utility function and preferred self-protection cost is
beyond the scope of this paper. Since it is expected that several farmers may benefit from
the reservoir for which a sluice release strategy is sought, using a method for determining
each farm’s irrigation requirements, which is standardised and independent of subjective
preferences, may be beneficial. Such an approach excludes individual risk preference when
determining the annual water demand profile for a reservoir; it rather depends only on
crop water requirements. This is referred to as the net irrigation requirement.

A globally accepted standard for the calculation of fixed crop water requirements in ir-
rigation studies was published by the Food and Agriculture Organisation of the United
Nations in 1974 [15]. This standard was updated and improved in 1990 by a panel con-
sisting of members of the International Commission for Irrigation and Drainage as well as
the World Meteorological Organisation. The resulting current standard is referred to as
the FAO Penman-Monteith method [15].
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CROPWAT 8.0 for Windows [19] is a DSS for the calculation of net irrigation requirements,
based on soil, climate and crop data. All calculations performed in CROPWAT follow
the FAO Penman-Monteith method. The equivalent South African standard is the DSS
SAPWAT [23].

2.3 Evaporation estimation and modelling

Evaporation from a water surface is the net rate of water transported from the surface into
the atmosphere [18]. Estimations of evaporation losses are required by all water balance
models for water reservoir systems. The modelling approach adopted in this paper to
predict future evaporation losses is discussed here.

Evaporation losses are usually assumed to be proportional to the average exposed water
surface area [17]. Van Vuuren and Gründlingh [25] modelled evaporation loss during period
i in a set T = {0, . . . , n− 1} of calculation periods spanning a hydrylogical year as

Ei = ei
Ai +At

2
, (1)

where t ≡ i − 1(modn) and Ai denotes the exposed water surface area at the end of
calculation period i ∈ T . Here ei is the evaporation rate associated with calculation
period i ∈ T , as determined from historical evaporation rates.

As their aim was to employ (1) in a linear programming model, van Vuuren and Gründlingh
[25] assumed a linear relationship between reservoir storage and exposed water surface
area. The relationship between the exposed water surface area and reservoir storage, as
defined by the local topography, is, however, usually non-linear. Sun et al. [17] developed
a piecewise linear model for approximating evaporation losses as a function of reservoir
storage. The latter approach is also adopted in this paper.

2.4 Decision support systems

There exists no universally agreed-upon definition for the notion of a DSS. A range of
definitions have been proposed, with the one extreme focussing on the notion of decision
support and the other on the notion of a system [10]. Shim et al. [14] state that “DSSs
are computer technology solutions that can be used to support complex decision making
and problem solving.” The development of DSSs draws from two main areas of research,
namely theoretical studies and organisational decision making [14].

DSSs may be partitioned into the categories of collaborative support systems, optimisation-
based decision support models and active decision support [14]. Collaborative support
systems aid groups of agents engaged in cooperative work by sharing information across
organisational, space or time boundaries with the aim of facilitating effective consensus
decision making. Optimisation-based decision support models generally consist of three
sequential stages. First, a system is abstractly modelled in such a manner that solution
objectives can be expressed in a quantitative manner, after which the model is solved ac-
cording to some algorithmic approach. Finally, the solution or set of solutions is analysed
in terms of their possible effects on the system [14]. The term active decision support
refers to a DSS’s ability to adapt its output actively when new inputs are entered, as
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used by van Vuuren and Gründlingh [25], thus contrasting DSSs used mainly for strategic
planning purposes to those which can be used for operational decision making. The DSS
proposed in this paper falls in the latter category.

The farmers who benefit from crop irrigation reservoirs are often in agreement that the
release of more water (up to maximum sluice capacity, thus not including floods) is more
beneficial than the release of less water [5]. It may therefore be assumed that the benefit
function for normal operation of an irrigation reservoir is a strictly increasing function of
release volume. This assumption renders the problem of determining a suitable release
strategy fairly simple: release the maximum amount of water, keeping in mind the risk of
not being able to achieve repeatability of the strategy over successive hydrological years.
The focus of a reservoir release DSS should therefore be on quantifying the risk related
to a given release strategy, rather than merely searching for an optimal strategy or set of
strategies.

Two DSSs have previously been developed for implementation at Keerom Dam. The first
is ORMADSS, developed by van Vuuren and Gründlingh [25] in 1998. This DSS relies on
a linear programming model for determining an optimal release strategy during average
years with the objective of minimising evaporation losses. The DSS receives the actual
reservoir level and other user-defined parameters as inputs and attempts to steer the actual
reservoir level to the optimal reservoir level for average years.

ORMADSS was validated using data from the 1990/91 hydrological year, by comparing
the total water yield and evaporation losses corresponding to the historical release strat-
egy (based on the benefiting farmers’ intuition) to those of the release strategies suggested
by ORMADSS. The overly conservative nature of the farmers became apparent during
the validation process, with the suggested strategies outperforming the historically imple-
mented strategy for 0%, 20%, and 40% reservoir reserve levels. The DSS was taken in use
in 2000, but after extremely dry years in 2002 and 2003, where the reservoir level fell to
below 25% of its capacity, confidence in the DSS decreased and it fell out of use.

Strauss [16] then attempted in 2014 to improve upon this DSS by adapting the way in
which risk is accommodated. In addition to a minimum reserve for the operating level of
the reservoir, Strauss implemented risk-related constraints in the form of release quantity
upper and lower bounds in the underlying mathematical model. This adaptation does not,
however, quantify risk explicitly, and therefore does not provide greater security in terms
of the risk of non-repeatability of the suggested strategy. Since no quantitative measure
of risk related to a given strategy is available, users cannot ascertain the extent to which
they are exposing themselves to the possibility of future water shortages if they choose to
follow the suggested strategy. It may follow that a decision maker who was reluctant to
continue using ORMADSS will view this adaptation in the same regard. The latter DSS
has not, in fact, been taken in use.

Strauss [16] criticised the simplistic manner in which van Vuuren and Gründlingh [25] ac-
commodated risk by only including a minimum reserve for the operating level of the reser-
voir, while not directly allowing for the possibility of unmet demand. Strauss nevertheless
implemented a very similar model, together with the additional risk-related constraints in
the form of release quantity upper and lower bounds. It is important to note, however,
that risk was also not quantified explicitly in the model of Strauss [16].
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Having access to a quantitative representation of risk is a crucial element lacking in the two
DSSs reviewed above. Furthermore, models which provide a single optimal solution may
be insufficient, since reservoir operation commonly involves trade-off decision options. In
response, multi-objective models have often been implemented in the context of reservoir
management.

3 Mathematical modelling framework

In this section, the 2015 mathematical modelling framework for reservoir releases of van
der Walt and van Vuuren [24] is briefly reviewed. This framework attempts to balance the
conflicting objectives of water demand fulfilment and future water shortage risk, taking
into account certain user preferences. The framework facilitates a comparison of different
release strategies in terms of a trade-off between various quantitative performance metrics.

3.1 Modelling assumptions

In order to develop a mathematical modelling framework for irrigation reservoir operation,
van der Walt and van Vuuren [24] made a number of important modelling assumptions.
They discretised the scheduling horizon over which a release strategy is to be determined
into a number of time intervals, called calculation periods, which are typically days or
weeks. Their model is therefore discrete in nature. The minimum possible duration over
which a constant water release rate can be implemented, as determined by the frequency
with which sluice adjustments are allowed, is called the decision period length. Decision
periods are typically weeks, fortnights or months, but their length is in any case a multiple
of the calculation period length. Water demand during a specific decision period was also
assumed to be constant, which is an acceptable assumption for short decision periods.

Van der Walt and van Vuuren [24] furthermore assumed that the evaporation rate expe-
rienced at the reservoir during a given calculation period is directly proportional to the
average exposed water surface area of the reservoir and thus a function of the average
reservoir volume during that period, according to (1). The coefficient of proportionality ei
in (1) was taken to depend on the historical meteorological conditions of the time interval
in question. The South African Department of Water Affairs and Forestry [6] maintains
a database of all reservoirs exceeding a certain minimum storage capacity, which includes
historical daily evaporation losses for these reservoirs. These loss rates may be used to
estimate the coefficient ei in (1) for all i ∈ T . For new reservoirs, the evaporation rates of
older reservoirs in the vicinity may be used as an initial estimate.

The repeatability of any reservoir release strategy is taken to depend on an estimate of
the most likely reservoir volume at the end of the hydrological year as a result of this
strategy. In particular, van der Walt and van Vuuren [24] took the reservoir volume
during the transition between two consecutive hydrological years as a measure of future
demand fulfilment security. A hydrological year in South Africa runs from October 1st to
September 30th.

Van der Walt and van Vuuren [24] finally adopted a standard conservation law in the
form of the assumption that the change in water volume during a given calculation period
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equals the net influx (including all the reservoir’s water sources, precipitation onto the
reservoir and in its catchment area, as well as seepage losses), less evaporation losses and
all reservoir outflows, including controlled sluice outflow and overflow.

3.2 Modelling framework for reservoir releases

The conceptual mathematical modelling framework of van der Walt and van Vuuren [24]
is illustrated graphically in Figure 1. In this framework, the model inputs have been parti-
tioned into historical data, as well as various user-inputs and reservoir-related parameters.
Historical data refer to past inflows, used as an indication of possible future inflows, and
past evaporation losses which may be used to estimate the coefficient of proportionality
of evaporation during any given calculation period.

Figure 1: Modelling framework for the problem of deciding on irrigation reservoir release
strategies [24].

The required user inputs are the decision period length (typically biweekly or monthly),
the number of remaining calculation periods in the current hydrological year, the current
reservoir volume and some target end-of-hydrological-year volume. The decision period
demand profile, which may be computed using standard irrigation decision support soft-
ware, such as CROPWAT [19] or SAPWAT [23], as well as demand-importance weights,
are also considered user inputs. The water demand and demand-importance weights are
recorded over decision period intervals. For application in calculation periods these values
are adjusted pro-rata.

Reservoir-related parameters include the sluice release capacity per calculation period, the
minimum allowed release volume per calculation period according to legal requirements,
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the reservoir’s storage capacity and its shape characteristic, which relates the water level,
stored water volume and exposed water surface area of the reservoir.

First, an initial release strategy in Figure 1(a) may be determined using the demand
profile and reservoir sluice parameters in Figure 1(b)–(c), or the user may simply input
his preferred strategy, to be analysed. Starting at the current reservoir volume in Figure
1(d), this initial strategy is then used, in conjunction with expected inflows in Figure
1(e) and an estimation of evaporation losses in Figure 1(g)–(i), to compute the calculation
period end volumes in Figure 1(j) for the remainder of the current hydrological year. More
specifically, the expected volume fluctuations of the reservoir, from the current date to the
end of the hydrological year, are calculated for each expected inflow input. For example,
if twenty years’ inflow data are available, twenty sets of possible reservoir volumes may
be obtained for the remainder of the hydrological year, in intervals not shorter than the
inflow data time intervals.

In the estimation of evaporation losses used in this procedure, the historically observed
evaporation rates in Figure 1(g) may be employed to obtain an expected evaporation rate
for each calculation period in Figure 1(h). These rates are then taken as the coefficients
of proportionality relating the evaporation loss to the exposed reservoir water surface area
as in (1).

Since the expected reservoir volume at the end of the hydrological year is of interest as a
metric of future demand fulfilment security, the hydrological year end-volume distribution
in Figure 1(k) is obtained, using the final volumes of each reservoir volume data set. The
minimum reservoir level at the end of the hydrological year associated with a user-specified
confidence in Figure 1(l) is then estimated from this distribution.

The expected end-of-hydrological-year volume is compared to some user-specified tar-
get end volume in Figure 1(m), as illustrated in Figure 1(n). If the expected end-of-
hydrological-year volume falls within a user-specified tolerance interval centred on the
target volume, the current strategy is returned as output, as illustrated in Figure 1(o).

If, however, the expected year-end volume fails to fall within the tolerance interval, the
current release strategy is adjusted, as illustrated in Figure 1(p), taking into account,
amongst other things, the size of the deviation of the expected year-end volume from
the target end volume, user-specified weights in Figure 1(q) which represent each demand
period’s sensitivity to demand fulfilment and the reservoir sluice parameters. The adjusted
strategy then serves as input for the calculation of new sets of reservoir volume fluctuations
in Figure 1(j). This procedure is repeated until the estimated year-end volume falls within
the user specified tolerance interval.

3.3 Modelling reservoir inflows

In order to model the fluctuations in reservoir volume during the hydrological year, ex-
pected reservoir inflow data are required. There are three possible sources for these data
[11]. One option is direct utilisation of the historical inflow data of the reservoir. The other
options involve simulation by random sampling and are distinguished by the distributions
utilised during the simulation process. Either empirical distributions of the inflows may
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be used for each simulation period, or some theoretical distribution may be fitted to the
inflow data.

The simulation period length may be chosen equal to the calculation period length. Vi-
sualising a two-dimensional cumulative distribution plot, historical net inflow for a given
period may be placed in bins on a horizontal axis, with each bin containing the number
of historical inflows less than the bin’s upper limit. The vertical axis then denotes the
number of inflow data points. The vertical axis may be normalised in order to represent
proportions of total inflows.

As mentioned, the South African Department of Water Affairs and Forestry’s database
includes past daily inflows for all large reservoirs in South Africa, typically resulting in
ample historical inflow data. This allows for the determination of accurate reservoir inflow
distributions. In other words, it is usually not necessary to fit a theoretical distribution
to the data — the empirically obtained distributions may instead be utilised directly. For
a newly built reservoir, the prediction of future inflows in the absence of historical data
would constitute a challenging, separate research project.

Utilising the inflow distributions described above, inflows may be emulated by Monte Carlo
simulation. Let Ii be the net reservoir inflow during simulation period i ∈ T and let U
be a uniform random variable on the interval [0, 1]. If Ii has the cumulative distribution
function Fi, then F−1i (U) has the same distribution as Ii. An instance of Ii may therefore
be simulated according to the inverse transform method [12] by generating a uniform [0, 1]
variate u and recording the value F−1i (u). Once this has been done for each simulation
period, the inflows of a single hydrological year have been simulated. A large number of
hypothetical parallel years may thus be simulated.

In the simulation approach described above, it is assumed that inflows during adjacent
simulation periods are independent. The validity of this assumption may be tested by
comparing selected statistical properties of inflows thus simulated to those of the histor-
ically observed inflows. A simulation approach with the incorporation of memory, such
as an artificial neural network or a modified Markov chain, would not rely on the afore-
mentioned assumption. Such approaches would, however, include a degree of prediction,
as mentioned in §2.1, which may result in overly optimistic planning. In fact, given the
extremely volatile nature of weather patterns, any attempt at synthetically increasing the
information inherent in historical inflow data over long planning horizons (such as one
year, for example) may result in an unsubstantiated increase in knowledge related to the
behaviour of inflows.

3.4 Estimating period end-volume distributions

Let Vi denote the reservoir volume at the end of calculation period i, let xi be the water
volume released during calculation period i, and let Ei be the volume of water lost due
to evaporation during calculation period i, where i ∈ T , for some set T = {0, . . . , n −
1} of calculation periods spanning a hydrological year. Furthermore, let ei denote the
evaporation rate per unit of average exposed water surface area during calculation period
i ∈ T , denoted by Ai. Then it follows that

Vi = Vt + Ii − xi − Ei (2)
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for all i ∈ T and t ≡ i − 1 (modn), into which expression (1) may be substituted. Fur-
thermore, the exposed surface area of the reservoir in (1) is related to the stored water
volume according to some reservoir shape characteristic f in the sense that

Ai = f(Vi) (3)

for all i ∈ T . A preliminary release strategy is determined according to the water demand
profile and the sluice release parameters. Let Di denote the water demand during calcula-
tion period i ∈ T , and let xmin and xmax denote respectively the minimum and maximum
possible release volumes during any calculation period. Then the water volume released
during calculation period i is assumed to be

xi =


xmax if Di ≥ xmax

Di if Di ∈ (xmin, xmax)
xmin if Di ≤ xmin

(4)

for all i ∈ T . Using the current reservoir volume, expected inflows during the remaining
calculation periods of the hydrological year and the preliminary release strategy described
above, a cumulative distribution function may be obtained for the reservoir volume at the
end of the hydrological year, as a result of the release in (4). This distribution, denoted by
FV , may be analysed by standard statistical methods of inference, to obtain an estimate
V ∗c of the expected reservoir end volume for a given probability c in the sense that

V ∗c = F−1V (1− c). (5)

The estimate V ∗c may be compared to a target end-volume specified by the decision maker.
If the estimate falls outside a certain tolerance band centred around the target end-of-
hydrological year volume (also specified by the decision maker), the release strategy may
be adjusted with the aim of centring the expected end volume on the target value. The
user-specified tolerance within which the target end volume should be met is denoted by
α ∈ (0, 1].

In the model, various factors are taken into account for this adjustment: the number of
calculation periods remaining in the current hydrological year, denoted by m, the end
volume estimate V ∗c , the target end volume, denoted by Φ, the minimum and maximum
sluice release parameters, and user-specified weight factors which represent each demand
period’s sensitivity to adjustments in release volume during that period, denoted by wi ∈
[0, 1], where a lower value represents a less adjustable period.

Let µw denote the mean of the user-defined weight factors. The adjustment process
proposed by van der Walt and van Vuuren [25] for determining a preliminary release
strategy is iterative in nature. Each iteration of this process may be accomplished in two
stages. First the adjusted volume

x′i = xi +
wi(V

∗
c − Φ)

mµw
(6)

is computed, after which the capped corresponding release quantity

x′′i =


xmax if x′i ≥ xmax

x′i if x′i ∈ (xmin, xmax)
xmin if x′i ≤ xmin

(7)
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is determined for each remaining calculation period i ∈ T after the current calculation
period. During each iteration of the adjustment procedure in (7), the end-volume distri-
bution is recalculated and a new end-volume estimate closer to the target value obtained,
until the estimate falls within the interval [(1 − α)V ∗c , (1 + α)V ∗c ]. Once the minimum
end-volume is thus centred on the target value, the particular incarnation of the release
strategy (7) during that iteration is suggested to the decision maker.

3.5 Quantifying the risk of water shortage

As mentioned, the repeatability of a release strategy is taken to depend on the reservoir
volume during the transition between two successive hydrological years as a result of
applying the strategy. The probability of water shortage associated with a reservoir volume
during this transition may be determined by equating the starting and target end-volumes
in the model, and solving the model for a given probability level. The number of times
that the reservoir volume drops below a user-specified threshold volume and the length
of time the volume remains below this threshold, for all historically observed inflows,
may be taken as an estimate of the probability of water shortage associated with a given
release strategy, transition volume and probability level. This probability estimate may
be adopted as a performance metric when comparing release strategies.

During any period in an actual year, the probability of reaching the end of the hydrolog-
ical year with at least a certain reservoir volume may be obtained from the end-volume
probability distribution resulting from the current release strategy. Either the probability
of obtaining a certain minimum end volume, or the minimum end volume expected to
be obtained for a fixed probability, may thus be adopted as a second performance metric
when comparing release strategies.

In the case of a particularly dry year, when the notion of risk requires special attention,
trade-off decisions between the fulfilment of the current hydrological year’s demand and
future repeatability associated with the release strategy may be required. Future repeata-
bility here refers to a level of confidence in the ability to fulfil the irrigation demands
of subsequent years. Due to particularly low reservoir storage levels during a dry year,
the decision maker may prefer to aim for a lower target end volume, since the proposed
strategy which centres the end-volume distribution on the specified target value for re-
peatability to within the acceptable tolerance interval fails to meet the current year’s
demand adequately. The fulfilment of the current hydrological year’s demand will thereby
be improved, but at the cost of a decrease in the security of future years’ water supply.
The improvement in demand fulfilment, as well as the decrease in security, may finally be
quantified and compared in terms of benefit and cost trade-offs.

4 Decision support system

The design and implementation of a novel DSS concept demonstrator, based on the math-
ematical modelling framework of §3, is described in this section. Section 4.1 is devoted to
a description of the working of the concept demonstrator graphical user interface, while
the method of implementation of this concept demonstrator is described in §4.2.
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4.1 Working of the concept demonstrator

In order to validate the modelling framework of §3, a concept demonstrator of the frame-
work was implemented in Python 2.7 on a personal computer. This DSS is referred to
as WRDSS — an acronym for Water Reservoir Decision Support System. The user may
link WRDSS to a specific irrigation reservoir by providing its historical inflow profile
I0, . . . , In−1, the historical evaporation rates e0, . . . , en−1 experienced at the reservoir, the
irrigation demand profile D0, . . . , Dn−1 and the reservoir shape characteristic (3) in the
form of Excel files. A screenshot of the main user interface of this concept demonstrator
is shown in Figure 2.

Figure 2: The main user interface of the WRDSS concept demonstrator.

The start date of the scheduling horizon and a lower threshold volume for the reservoir may
be entered into the text boxes labelled accordingly in the left-hand top corner. The current
reservoir volume, as well as the target end-of-hydrological-year volume, may be specified
using the blue vertical scale widgets, while the end-volume tolerance may be specified
using the horizontal scale widget. The user may enter the probability (as a percentage)
with which at least the end-volume target should be obtained in the text box labelled
confidence. The difference in meaning between the notions of probability and confidence,
as defined in probability theory, is noted. In this context, confidence is defined as the
probability of obtaining at least the target end volume. This slight abuse of terminology
is intentional as it is expected to coincide with the intuition of the end-users of the DSS,
who are expected to be farmers.

The user may specify whether the model should estimate an initial strategy using the
demand input data or whether the model should employ a user-specified initial strategy,
by clicking the corresponding check box. The Set Weights button may be used to access
a separate window, shown in Figure 3, in which the demand-importance weight of each
month may be set, for either monthly or biweekly decision period lengths. The Draw
Iteration check box may be used to specify whether the final iteration plot, of which
an example is shown in Figure 4(a), should be displayed. This iteration plot does not
provide additional output information to the user. It merely depicts the model’s volume
fluctuation estimates, which may be used for explanatory purposes when introducing a
new user to WRDSS.
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Figure 3: The user interface for specifying the demand-importance weights in the WRDSS
concept demonstrator.

(a) End-of-year volume fluctuations (b) Release strategy plot

(c) End-volume cumulative distribution (d) Estimated strategy probabilities

Figure 4: Output produced by the WRDSS concept demonstrator.

Once the above-mentioned parameters have been specified, the user may initiate the model
iteration process by clicking the Iterate Strategy button, which results in a suggested
output strategy, as shown in Figure 4(b). The buttons in the right-hand column of the
main user interface may be used to analyse the model output. Clicking the Threshold
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Probability button displays the probability of the reservoir volume dropping below the
specified threshold volume, for the initial and iteratively adjusted strategies. An example
of such output is shown in Figure 4(c). The End Volume Distribution button opens a plot
of the end-volume cumulative distribution for the latest iteration, as shown in Figure 4(d).
The probability of obtaining at least a given end volume may be obtained by entering a
volume into the text box labelled Test End Volume (M`) and clicking the End Volume
Probability button. The probabilities of obtaining 5 000 M` or 7 000 M` are, for example,
shown in Figure 4(d).

4.2 Implementation of the concept demonstrator

The unified modelling language [22] class structure of the concept demonstrator imple-
mentation of WRDSS is shown in Figure 5. In the figure, each class is represented as a
rectangle, listing its attributes followed by its operations, with the exception of the GUI
class (its attributes have been summarised for the sake of brevity). The attributes of a
given class are the variables which exist in an instance of the class, whilst operations are
the methods which may be performed on these attributes. If one class utilises another at
some point in time, the first class is said to depend on the latter. Class dependency is
indicated by dashed arrows in the figure.

The GUI class displays the graphical user interface which creates an instance of the
Weights class. This class is used when the user specifies the sensitivity of each demand
period. By default, constant weight values are stored for each month of the hydrological
year, but the convert to biweekly operation is called if the user checks the corresponding
radio button, after which the weights are stored in constant biweekly periods by calculating
the weighted average importance values on a biweekly basis. The Dates class is used to
load the current date and manage the start date of the model. The GUI class depends on
the Strategy class for model execution once the user parameters have been specified. The
Strategy class performs the iterative procedure of the mathematical modelling framework,
as described in §3.4, and depends on several other classes for its operation. First, the
set initial release operation of the Demand class is used to specify the initial release
strategy. The EndVolumeDistribution class depends on the Volumes and Inflows
classes. It is used to determine the end-volume distribution resulting from a given release
strategy by means of the end volume distribution operation.

The Inflows class loads the historical inflow data upon initialisation, which are then passed
to the Volumes class by the EndVolumeDistribution class during model execution.
The functionality adopted to simulate inflows is present in this class and may be adapted
or reviewed in future work. It is, however, not used during model execution in the context
of this paper, as motivated in the case study to follow. The operation get end vol estimate
implements (5) to obtain an estimate of the expected end volume associated with a given
user-specified probability according to the aforementioned end-volume distribution. The
draw volumes operation may be used to plot the end-volume distribution resulting from
a given strategy, while the shortage probability operation obtains the probability of the
reservoir volume dropping below a certain user-specified threshold volume, as explained
in §3.5. The adjust strategy operation of the AnaliseStrategy class implements (7) and
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Figure 5: The unified modelling language [22] class structure of the concept demonstrator
implementation of WRDSS.
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is called by the iterate operation in the Strategy class to perform an adjustment of a
water release strategy after each iteration.

The Volumes class depends on the FixedPointIterator and Evaporation classes in
the calculation of period volumes, which is performed by the iterate operation of this class.
The FixedPointIterator class, in turn, depends on the Shapes class to compute the
exposed water surface area for a given reservoir volume using the volume to area operation.
This surface area is employed in the estimation of evaporation losses. The iterate operation
in the FixedPointIterator class implements the method of fixed point iteration to solve
(2) for Vi during each replication of each calculation period. The Evaporation class
calculates the historical daily average evaporation rate and fits a polynomial function to
these averages upon initialisation. The get evaporation rate operation of this class returns
the evaporation rate estimation function value for a given day, according to the polynomial
function fitted. This value is passed to an instance of the FixedPointIterator class, by
the iterate operation of the Volumes class.

Finally, the EndVolumeProbability and StrategyCompare classes facilitate analysis
of the system output. The StrategyCompare class may be used to draw a comparison
between water demand, the initial release strategy and the adjusted release strategy by
means of the draw comparison operation. The EndVolumeProbability class is used to
plot the end-volume distribution, using the draw end vol dist operation, and to estimate
the probability of ending the hydrological year with at least a certain reservoir storage
level, using the prob of ending at least operation.

Not all the attributes, operations or even classes shown in Figure 5 are employed directly
in the execution of the modelling approach — some were implemented to analyse the
efficiency and precision of the DSS during the development process. Thus, if adjustments
or updates are made to the DSS, these may perhaps be tested and analysed using the
existing functionality. An example of such an operation is the draw convergence operation
of the FixedPointIterator class, which plots the estimated error for each iteration. This
is useful when analysing the efficiency of the fixed point iteration procedure, but is of
little value to the end user of the DSS. Other examples include the draw fit operation of
the Shapes class, used to visualise the effect of fitting a piecewise linear function to the
reservoir characteristic, and the draw average evaporation operation of the Evaporation
class, which plots the function fitted to the historical average evaporation rates and may
be used to analyse its ability to represent the historical trend adequately.

The ValidateModel, HistoricReleases and HistoricVolumes classes are not employed
in the DSS execution, but may be used to estimate modelling errors via the calculate model
error operation. Using the draw volumes operation of the ValidateModel class, for
example, the model accuracy may be depicted visually by plotting historically observed
reservoir volumes against the model’s volume estimations for the corresponding historical
input data.
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5 Keerom Dam: A case study

Keerom Dam is a typical example of an open-air reservoir with the primary purpose of
water supply for irrigation. It is the second largest privately owned open-air reservoir
in South Africa and is situated in the Nuy agricultural irrigation district, north-east of
Worcester, in the Western Cape. The reservoir’s wall height from dam crest to river bed
level is 38 metres (m) and, when at its maximum storage capacity of 9 600 mega litres
(M`), the water surface area is 92 hectares (ha) [7].

Figure 6: Keerom Dam, the irrigation reservoir of the Nuy agricultural district.

Nineteen farmers benefit from its water supply, of which six serve on the reservoir board
of management. This board determines the release strategy for the reservoir on an annual
basis. The DSS of §4 is applied in this section to a special case study involving Keerom
Dam in order to demonstrate the workability and usefulness of the system in a real-world
context.

5.1 Background

A measuring station situated on the dam wall is visible in Figure 6. This measuring station
records the reservoir water level on a daily basis, while a second measuring station situated
downstream from the reservoir’s sluice measures the water release rate on a daily basis.
Both of these measuring stations transmit their data via satellite to the Department of
Water Affairs and Forestry for incorporation into their national database.

The reservoir volume is determined from the measured water level using the reservoir shape
characteristic, shown in Figure 7, which relates the reservoir volume and surface area.
Using sonar, this shape characteristic was determined by the consulting and engineering
company Tritan Inc. [7].

The measured outflow, reservoir volume and evaporation rates obtained from the database
of the Department of Water Affairs and Forestry [6] for the hydrological years spanning
1 October 1955 to 31 September 2013 were used to calculate the actual daily reservoir
inflow.

5.2 Simulation of inflows

The method described in §3.3 for the simulation of inflows was applied using historical
inflow data for Keerom Dam. The mean annual inflow obtained from a large number (a
thousand years in this instance) of Monte Carlo simulations of daily inflows was found
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Figure 7: The shape characteristic f in (3) for Keerom Dam.

to fall within 5% of the historically observed average, yet the standard deviation of the
total annual simulated inflow was approximately a sixth of that associated with the actual
historical inflow, as shown in Table 1.

Mean Standard deviation

Historical inflows 16 481.95 47 215.24
1000 years’ simulated inflows 15 758.24 7 878.92

Table 1: Historical and simulated inflows for Keerom Dam.

The reason for this discrepancy is the assumption of independence between adjacent sim-
ulation periods inherent in this modelling approach, as mentioned in §3.3. In reality, large
inflows tend to decrease gradually over a period of a couple of days or weeks, whilst in
the Monte Carlo simulation it may happen that a large inflow, lasting only a single day, is
simulated. This means that over longer periods (such as years, for example), the variation
in the total inflow obtained during the simulations may be substantially less than that
historically observed.

Since one of the underlying assumptions on which this simulation approach relies causes
a substantial decrease in variation over several simulation periods, the approach may lead
to overly optimistic planning, resulting in strategies corresponding to inadequate reservoir
reserve levels for absorbing realistic inflow variation. For this reason it was decided to
abandon the simulation approach as a means of modelling reservoir inflows mathematically.
Considering other sources of inflow input data for the model, as mentioned in §3.3, it was
decided that historical inflows would instead be utilised directly in this case study.
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5.3 Volume calculation accuracy

The method described in §3.3 for determining the reservoir volume was validated by apply-
ing (2) to historical data of Keerom Dam and comparing the model’s predicted volumes to
the historically observed reservoir volumes. The historical evaporation losses and Keerom
Dam’s volume-area characteristic were employed in this process. The historical evapora-
tion losses were used to obtain a mean evaporation rate, measured in millimetres per day,
for each day of the year. A polynomial function was then fitted to these rates, using least
squares regression. The degree of the polynomial was incrementally increased until the
best visual fit was acquired. The corresponding least squares regression errors are shown
in Table 2.

Degree 3 4 5 6 7

R2 error 48.38% 48.21% 18.59% 18.03% 12.77%

Table 2: The degree of the polynomial function fitted to the mean historical daily evapo-
ration rate and the corresponding least squares regression error.

The seventh-degree polynomial representation of the mean daily evaporation rates in Fig-
ure 8 was eventually obtained as a result of this process. As may be seen in the figure,
there are no irregular function oscillations on the interval [0, 364] and no rank warning
was issued by the computation package, numpy [13], used to achieve the fit.

Figure 8: Seventh-degree polynomial fitted to the Keerom Dam daily evaporation rate.

The reservoir shape characteristic in Figure 7 and the mean daily evaporation rate poly-
nomial representation in Figure 8 were used in the estimation of evaporation water losses
E0, . . . , E364, as defined §3.4.

The release strategy was set equal to the historically implemented release strategy, and
the expected reservoir volume was calculated using the historical inflows. A calculation
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period length of one day was chosen, since this is the resolution of the input data, leading
to the calculation period index set T = {0, . . . , 364}. Let p denote the polynomial function
fitted to the average daily evaporation rate, as shown in Figure 8. Then

ei = p(i) (8)

for all i ∈ T . By substituting (1), (3) and (7) into (2) it follows that

Vi ≡ Vt + Ii − x′′i − p(i)
f(Vi) + f(Vt)

2
(9)

for all i ∈ T and t ≡ i− 1 (modn). Since (9) is difficult to solve analytically, a numerical
method was used instead. The method of fixed point iteration [3] was selected for this pur-
pose, since (9) is already in the correct format for this method and function differentiation
is not required in fixed point iteration. A maximum estimated error of 0.1% was allowed
and all volume estimates in (9) converged to within this tolerance within four iterations.

The daily volume error is defined as the percentage deviation of the model’s volume pre-
diction from the historically observed volume. The method used for volume calculation
was found to be sufficiently accurate for its intended application, because an average daily
volume error of 0.52% and corresponding standard deviation of 0.55% was thus achieved
over the twenty-year validation period 1993–2013.

5.4 DSS input data

The irrigation water demand profile for the Nuy irrigation district, calculated using CROP-
WAT [19] and shown in Table 3, was loaded into the DSS. These demand values were
calculated by Strauss [16] and were validated by the authors.

The demand-importance weights were specified as indicated in Figure 3. For the months
from August to December, water demand is low (less than the minimum allowed release).
By fixing the importance weights of these months at small values, it is therefore ensured
that excess water is released in greater proportions during months of higher demand. In
the case of a water shortage, less water cannot be released during the months of August to
December, since releases during these months already equal the minimum allowed release.
The assigned weights would, therefore, also expedite the model iteration process in the
case of a dry year.

5.5 Transition volume analysis

After loading the required data inputs into the DSS, a transition volume analysis was
performed. The starting and target volumes were equated, a release strategy was em-
ployed according to (9) and the model was solved for a range of transition volumes. The
probabilities of the reservoir volume dropping below certain threshold volumes were esti-
mated according to the method described in §3.5. The results of this analysis are shown
in Table 4.

From the results in Table 4, transition volumes of larger than 4 000 M` seem adequate if
irrigation demand fulfilment is the only requirement. For a starting volume of 4 000 M`, the
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Table Wine Vege-
grapes grapes Orchards Olives tables Cereals Lucerne Total

Oct 0.82 154.63 13.34 80.48 8.11 31.89 229.00 518.27
Nov 2.54 158.59 13.68 103.18 8.32 32.71 234.87 553.89
Dec 3.93 163.64 17.37 106.47 8.58 33.75 242.34 576.08
Jan 5.39 220.58 17.08 131.56 9.64 37.92 272.23 694.40
Feb 5.18 194.27 18.05 126.40 10.19 40.07 287.71 681.87
Mar 4.14 193.91 10.29 100.93 10.17 40.00 287.18 646.62
Apr 2.25 168.68 8.96 65.85 8.85 34.79 249.82 539.20
May 0.78 0.00 0.00 56.84 0.00 0.00 0.00 57.62
Jun 0.00 0.00 0.00 48.97 0.00 0.00 0.00 48.97
Jul 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Aug 0.00 0.00 4.66 38.11 0.00 0.00 0.00 42.77
Sep 0.71 0.00 7.12 52.34 0.00 0.00 0.00 60.17

Total 25.74 1 254.30 110.55 911.13 63.86 251.13 1 803.15 4 419.86

Table 3: Irrigation demand of the Nuy agricultural district in M` [16].

Transition/year-end Probability of reservoir level dropping below threshold
volume (M`) Empty ≤ 1 000 ≤ 2 000 ≤ 3 000 ≤ 4 000 Overflow

1 000 13.81 % 55.97 % 75.49 % 83.61 % 88.08 % 2.71 %
2 000 5.09 % 27.06 % 61.53 % 78.91 % 85.63 % 3.42 %
3 000 0.89 % 11.74 % 30.72 % 64.05 % 80.29 % 4.43 %
4 000 0.00 % 2.83 % 14.43 % 32.66 % 65.24 % 4.96 %
5 000 0.00 % 0.00 % 3.59 % 16.23 % 34.45 % 5.33 %
6 000 0.00 % 0.00 % 0.00 % 4.10 % 17.34 % 6.70 %
7 000 0.00 % 0.00 % 0.00 % 0.00 % 4.59 % 8.12 %
8 000 0.00 % 0.00 % 0.00 % 0.00 % 0.05 % 9.44 %
9 000 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 12.45 %

Table 4: Transition volume analysis for Keerom Dam. Volumes are given in M`.

risk of water shortage is negligibly small over a period of one hydrological year. Since the
expected reservoir volume during the hydrological year, for a starting volume of 8 000 M`,
is approximately 4 000 M`, it follows that the risk of water shortage is negligibly small over
a period of at least two hydrological years, for a starting volume of 4 000 M`.

At lower reservoir levels, evaporation losses are smaller since the average exposed water
surface area of the reservoir is smaller. Thus, the probability of reaching a given target
end volume, for the same release strategy, is greater for lower transition target volumes.
Optimality in the context of maximising the total annual reservoir outflow by minimising
evaporation losses, as pursued by van Vuuren and Gründlingh [25], and subsequently by
Strauss [16], therefore corresponds to managing the reservoir at the lowest possible level.
Such “optimal” management is, however, only beneficial in systems with very limited
variation in input variable behaviour. Optimal management strategies in pursuit of little
or no redundancy within systems exposed to substantial volatility result in high exposure
to risk [20]. In the case of Keerom Dam, there is extreme variation in the total annual
inflow volume, with the standard deviation approximately three times the mean, as may
be seen in Table 1.



Decision support for open-air irrigation reservoir control 23

It is therefore not necessarily better to choose the smallest possible transition volume in
pursuit of minimising evaporation losses. On the contrary, the risk of not being able to
satisfy demand becomes negligible for higher transition volumes, although the WRDSS
user will have to accept a slightly lower level of confidence in reaching the target end
volume. For lower transition volumes, the risk of water shortage increases, which represents
a very undesirable situation for farmers who depend on the reservoir water supply.

The precipitation norms in the Nuy district typically cause Keerom Dam to reach its
largest storage volume during the transition between hydrological years. It may, therefore,
in general (and specifically also in the context of Keerom Dam) be best to select the
largest possible transition volume which still allows releases of acceptable magnitude for
the purpose of meeting irrigation demand.

Aiming for a transition volume in the vicinity of 8 000 M` seems to be a prudent choice
in the context of Keerom Dam. With such a choice, there should be no occurrences of
water shortage, if the last 58 hydrological years’ data are used as an indication of possible
likely futures. Even for the driest years observed as of yet, the end volume should not
drop to catastrophically low levels. This recommendation is analysed and substantiated in
hindsight in the following section by considering a set of historically observed hydrological
years.

5.6 Release strategy suggestion

For an analysis of WRDSS’s capability of suggesting good release strategies, the concept
demonstrator of §4 is applied in hindsight in this section to the 2003/2004 hydrological
year observed at Keerom Dam — the year of volatile meteorological conditions after which
the previous DSS (ORMADSS) fell out of favour. The expected volume fluctuations
resulting from the suggested strategies are then compared to the actual historical volume
fluctuations.

Suppose a year-end target volume of 8 000 M` is initially selected and that suggested
strategies are obtained from WRDSS at 50% and 75% confidence levels, where the latter
would represent a more risk-averse user. Keerom Dam’s volume on 1 October 2003 was
9 645.23 M`. The water demand, the actual historical release strategy and the two strate-
gies suggested by WRDSS are shown in Figure 9(a) for a target end volume of 8 000 M`.
The volume fluctuations for the 2003/2004 hydrological year corresponding to these three
strategies are shown in Figure 9(b).

It may be noted that the 75%-strategy outperforms the actual historical strategy in terms
of maintaining reservoir storage levels, whilst the strategy suggested at a 50% confidence
level fares slightly poorer than the historically adopted strategy. Suppose that six months
into the year WRDSS were once again to be consulted. The resulting strategy suggestions
and corresponding volume fluctuations are shown in Figures 10(a) and 10(b), respectively.
It may be noted that even the strategy suggested by WRDSS at a 50% confidence level now
outperforms the historically adopted strategy by obtaining a slightly higher end volume.

Suppose WRDSS were finally to be consulted with three months of the 2003/2004 hy-
drological year remaining. At this point the DSS outputs a failure to converge message,
indicating that the strategy cannot be adjusted enough to obtain the target end volume at
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the selected confidence levels. Strategies managing the end volume as close as possible to
the target are nevertheless suggested as output. These strategies and the corresponding
volume fluctuations are shown in Figures 11(a) and 11(b), respectively.

(a)

(b)

Figure 9: Release strategies suggested by WRDSS at the start of the 2003/2004 hydrolog-
ical year and corresponding reservoir volume fluctuations for the actual starting volume
of the year and a target end volume of 8 000 M`.
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(a)

(b)

Figure 10: Release strategies suggested by WRDSS six months into the 2003/2004 hydro-
logical year and corresponding reservoir volume fluctuations for the actual starting volume
of the year and a target end volume of 8 000 M`.
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(a)

(b)

Figure 11: Release strategies suggested by WRDSS nine months into the 2003/2004 hy-
drological year and corresponding reservoir volume fluctuations for the actual starting
volume of the year and a target end volume of 8 000 M`.

The true and expected end volumes for the 2003/2004 hydrological year are listed in
Table 5. Both strategies suggested by WRDSS may be seen to outperform the historically
adopted strategy in hindsight, by achieving higher reservoir storage levels at the end of a
particularly dry year.

Strategy End volume

75% confidence 6 335.73 M`
50% confidence 5 047.73 M`
Historical 4 945.34 M`

Table 5: End volumes for the 2003/2004 hydrological year at Keerom Dam for a 8 000 M`
target transition volume.
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5.7 Response of Keerom Dam board of management

In October 2015, the concept demonstrator of WRDSS was presented to the chairperson
of the Keerom Dam board of management as well as ten farmers who benefit from the
reservoir’s water supply. The DSS was positively received and the farmers were excited by
the possibility of quantifying the future water shortage risk related to a chosen strategy
[5]. The ability to gauge whether operational decisions are overly conservative on the one
hand or heedless on the other, aroused enthusiasm amongst the farmers present. The
concept demonstrator of WRDSS was subsequently installed on the personal computers
of several of these farmers, and the system was taken in use by the board of management
on 15 January 2016.

6 Conclusion

A novel DSS concept demonstrator for open-air irrigation reservoir control, called WRDSS,
was proposed in this paper. The system is based on the mathematical modelling framework
of van der Walt and van Vuuren [24]. This framework allows for the quantification of
water shortage risk, the degree of strategy repeatability and the extent to which demand
fulfilment is achieved. This information may enable operators to compare strategy choices
objectively, thereby aiding them in selecting a consensus reservoir release strategy.

The release strategy suggestions of WRDSS depend on several user-specified parameters,
including demand importance weight factors denoting a given period’s demand flexibility,
a year-end target volume and a confidence level by which this target end volume is to
be obtained. This increases the model’s versatility, as it incorporates the user’s attitude
toward risk to some extent, instead of simply suggesting a strategy based on reservoir
dynamics.

The computerised concept demonstrator of WRDSS was applied to a real case study
involving Keerom Dam in a bid to validate the DSS, by comparing its strategy suggestions
to various historically employed strategies and the reservoir volume fluctuations resulting
from these strategies. It was found that WRDSS’s strategy suggestions would have fared
better in hindsight in terms of preserving reservoir storage levels than the historically
employed strategies, especially during dry hydrological years, thereby diminishing the
farmers’ exposure to water shortage risk. The concept demonstrator was received with
positive enthusiasm by the members of the Keerom Dam board of management who took it
in use for strategy suggestion. The objective manner in which strategies can be compared,
as facilitated by the quantitative performance metrics calculated by WRDSS, was noted
as a significant benefit by members of the board.

In WRDSS, expected volumes are estimated using possible volume fluctuations based
on historically observed inflows. Previous models employed at Keerom Dam estimated
volumes using inflow averages instead. The reservoir volume is, however, a non-linear
function of inflows and release volumes, since evaporation losses are proportional to the
reservoir’s exposed water surface area, which is a non-linear function of the reservoir
storage volume, and since the reservoir volume may only increase up to its maximum
storage capacity. More specifically, for a given fixed release strategy, the limits of possible
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hydrological year-end volumes, based on historically observed inflow data, are concave
functions of the total annual inflow, up to the reservoir storage capacity. According to
Jensen’s well-known inequality [4], the expected value of a concave function of a random
variable is not greater than the concave function evaluated at the expected value of the
random variable. In the context of this paper, reservoir inflow is a random variable
and the expected reservoir volume is a concave function of this variable. The model on
which the WRDSS is based is therefore expected to produce more conservative, and more
realistic, volume estimations than previous models, because estimations are performed on
the function values, instead of on the variable values themselves. The standard approach
of utilising historical cumulative inflow distributions for discrete simulation periods in a
Monte Carlo simulation setting was analysed in the context of Keerom Dam and found
to be an insufficient representation of inflow behaviour. It was determined that historical
inflows, which represent existing knowledge on inflow behaviour, should instead be utilised
directly in the model.

7 Future work

Various ideas for future work, which may be pursued as extensions to the work documented
in this paper, are mentioned in this final section. A cost-benefit analysis may be performed
in order to gain a concrete understanding of the financial implications of experiencing
water shortage. The influence of the shortage magnitude, duration and time of occurrence
may thus be investigated. Such information may perhaps be utilised in the selection of
demand-importance weights to be used in WRDSS. An analysis of inflow variation may
also be performed in respect of a number of large irrigation reservoirs so as to gain an
understanding of a reservoir’s role either as buffer in terms of limiting outflows or as a
source of security in hedging farmers against water shortage risk. In this paper, it was
observed in the case of Keerom Dam that the volatility of annual inflow volumes is so
extreme that mean inflow values are of little use. Since the effects of small annual inflows
differ vastly from the effects of large annual inflows, considering only standard deviation
is not adequate.

As WRDSS was developed with the intention of being a generic DSS for the selection of
water release strategies at open-air irrigation reservoirs, it may be applied to case studies
other than that of Keerom Dam in order to explore its flexibility in terms of suggesting
good water release strategies.

A study may further be performed to determine beneficial release strategies at large water
reservoirs, in the presence of a network of smaller secondary reservoirs located downstream.
In the case of Keerom Dam, for example, all of the farmers who benefit from water from
the reservoir also have smaller dams on their farms in which they can store water released
from Keerom Dam. These secondary reservoirs may differ in size and may each have
a unique demand profile. Methods for the aggregation of these demand profiles into a
demand profile for the larger, upstream reservoir may also be investigated.

The functionality of WRDSS may finally be extended to consider strategy formulation over
scheduling horizons exceeding one year. The effects of a given strategy on storage levels
when considering N ∈ {1, 2, 3, . . .} consecutive hydrological years’ inflows may be analysed
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to determine an explicit, non-conditional N -year water shortage risk corresponding to a
given transition volume.
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