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Abstract

Accurate prediction of daily peak load demand is very important for decision makers in the
energy sector. This helps in the determination of consistent and reliable supply schedules
during peak periods. Accurate short term load forecasts enable effective load shifting between
transmission substations, scheduling of startup times of peak stations, load flow analysis and
power system security studies. A multivariate adaptive regression splines (MARS) modelling
approach towards daily peak electricity load forecasting in South Africa is presented in this
paper for the period 2000 to 2009. MARS is a non-parametric multivariate regression method
which is used in high-dimensional problems with complex model structures, such as nonlin-
earities, interactions and missing data, in a straight forward manner and produces results
which may easily be explained to management. The models developed in this paper consist
of components that represent calendar and meteorological data. The performances of the
models are evaluated by comparing them to a piecewise linear regression model. The results
from the study show that the MARS models achieve better forecast accuracy.
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1 Introduction

One of the most weather-sensitive sectors of any economy is the energy sector. In this
sector accurate prediction of daily peak electricity demand is very important. It provides
short term forecasts which are required for dispatching and economic grid management of
electric energy [1, 2, 3, 8, 16, 19, 21, 22]. The most important weather factors which affect
daily peak demand (DPD) is temperature. Changing weather conditions represent the
major source of variation in peak demand forecasting and the inclusion of temperature has
a significant effect due to the fact that in winter heating systems are used, whilst in summer
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air conditioning appliances are used [6, 10, 11, 13, 14, 15, 17, 18]. Other weather factors
include relative humidity, wind speed and cloud cover. Electricity demand forecasting
has received extensive attention in the literature using various techniques ranging from
classical time series methods and neural networks to regression methods. In this paper a
multivariate adaptive regression splines (MARS) model is developed and used to predict
daily peak electricity demand for South Africa. An updated review of different forecasting
methods may be found in [7, 12].

The remainder of the paper is organised as follows. In Section 2 the data are described and
a preliminary data analysis is carried out. The piecewise linear regression and the MARS
models are presented in Section 3. A discussion of the results is presented in Section 4,
and the paper closes in Section 5.

2 Definitions and data

The data considered in this paper are on net energy sent out (NESO) in response to some
demand for electrical power. NESO (measured in megawatts) is defined as the rate at
which electrical energy is delivered to customers. In this paper NESO is used as a proxy
of electrical demand after adjusting for energy losses. The data are for the period 2000 to
2009.

This definition of electrical demand has its weaknesses. Electrical demand is bounded by
the power plants’ capacity to provide supply at any time of the day, including the need
for reserve capacity. Demand cannot exceed supply and there are no market forces acting
to influence electricity prices and hence reducing demand in the short run. Prices are
generally fixed. If demand were to exceed supply, intervention takes place in the form of,
for example, load shedding. Load shedding is the last resort used to prevent a system-wide
blackout. This NESO definition excludes the demand from people, companies, etc. who
are willing (or unwilling) and able (or unable) to pay for electricity, but currently do not
have access to electrical power. Despite the weakness in the NESO definition of electrical
demand, it is still a good and measurable proxy for electrical demand.

The daily peak demand (DPD) is the maximum hourly demand in a 24-hour period. Ag-
gregated DPD data were used for the industrial, commercial and domestic sectors of South
Africa. Historical data on temperature were also collected from 22 meteorological stations
from all the provinces of the country. The data were aggregated to obtain average daily,
maximum and minimum temperatures for the entire country.

The time series plot of DPD in Figure 1 shows a positive linear trend and a strong seasonal
fluctuation. The trend is mainly due to economic development of the country. Figures 2
and 3 shows daily and monthly index plots respectively. The basis for each index is
100. The seasonal peak is in July, which is a winter month. There is another small
summer peak in October. The daily index plot shows that demand for electricity during
week days is above the average consumption and decreases significantly on Saturdays and
Sundays. A better representation of the relationship between DPD and temperature is
shown in Figure 4. The peak temperature is the temperature recorded during the hour of
peak demand on day t. The relationship is nonlinear. The demand for electricity is highly
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sensitive to temperature fluctuations in winter and less sensitive in summer. DPD increases
sharply as temperature decreases. The non-linear relationship between temperature and
DPD calls for the derivation of two functions: one for cooling degree-days and the other
for heating degree-days. Cooling degree-days (CDDt) and heating degree-days (HDDt)
are estimated on the basis of the two linear functions

CDDt = max{Tt − Tref , 0}

and

HDDt = max{Tref − Tt, 0},

respectively, as defined in [12], where Tref represents the temperature which separates the
winter and summer periods and where Tt represents the peak temperature on day t. The
reference temperature (Tref) has been selected to be equal to 20.5◦C; this appears to be the
temperature at which the minimum demand for electricity occurs. Above this temperature,
electricity demand tends to rise slightly and below this temperature electricity demand
increases significantly.
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Figure 1: Time series plot of daily peak electricity demand for the period 1/1/2000 to

14/12/2009.

3 The models

A piecewise linear regression model and a MARS model are presented in this section.
These models are used later for out-of-sample predictions of DPD. In both models DPD
is taken as the dependent variable.
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Figure 2: Daily index plots.

3.1 The piecewise linear regression model

Regression-based methods have been used extensively in load demand forecasting [4, 10,
20, 22]. These methods range from simple linear to multivariate linear regression models
and work very well when the relationship between the dependent variable and the predictor
variables is linear. They are usually fast, reliable and easy to implement with relatively
robust solutions.

However, the relationship between electricity demand and temperature is nonlinear, as
shown in Figure 4. This calls for the use of a multivariate linear regression model with three
piecewise linear regression functions representing the winter, non-weather and summer-
sensitive components.

The piecewise linear regression model used in this paper may be written as

zt = β0 + β1t+ β2(xpt − tw)x1t + β3(xpt − ts)x2t

+
7∑

d=1

αdDdt +
12∑

j=1

τjMjt + µHt + δHt−1 + λHt+1 +Rt, (1)

where xpt represents peak temperature (in degrees Celsius). The peak temperature is
the temperature recorded at the hour of peak demand on day t, zt denotes the DPD
(in megawatts) observed on day t, tw denotes the temperature where the winter-sensitive
portion of demand joins the non-weather-sensitive demand component, ts denotes the tem-
perature where the summer-sensitive portion of demand joins the non-weather-sensitive
demand component, and β0 represents the mean DPD observed during the non-weather-
sensitive period (tw ≤ xpt ≤ ts). It should be noted that DPD during non-weather-sensitive
days does not depend on temperature (xpt). The variable t represents the trend compo-
nent, Ht, Ht−1 and Ht+1 are dummy variables representing holiday, day before and day
after a holiday, respectively. The day-of-the-week effect is represented by Ddt, where d
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Figure 3: Monthly index plots.

denotes the days Tuesday up to Sunday with Monday as the base period. Ddt equals 1 if
day d is found in observation t, or zero otherwise, with t = 1, 2, . . . , n. The monthly effect
is denoted by Mjt, where j represents the months February up to December with January
as the base month. Mjt equals 1 if month j is found in observation t, or zero otherwise,
with t = 1, 2, . . . , n. Furthermore, Rt = φ1Rt−1 + φ2Rt−2 + φ5Rt−5 + φ7Rt−7 + εt, where
Rt is a stochastic disturbance term and εt is the innovation in the disturbance with

x1t =
{

1, if xpt − tw < 0
0, otherwise

and

x2t =
{

1, if xpt − ts > 0
0, otherwise.

The model in (1) accounts for any residual correlation that may occur as a result of the
week-to-week variation in peak demand and also for the day-to-day variation. The model
is based on the following theoretical assumptions:

1. Peak demand on day t is highly correlated with peak demand on day t+ 1.
2. There may be significant correlation between demand 2 days, 5 days and/or 7 days

apart.

The derivations of the equations of the three demand-temperature lines are presented in
the appendix at the end of the paper.

3.2 The multivariate adaptive regression splines (MARS) model

MARS is a non-parametric multivariate regression method which was developed in [9] and
has been used to solve high-dimensional problems with complex model structures, such
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Figure 4: Scatter plot of daily peak demand against peak temperature (in oC).

as nonlinearities, interactions, multicollinearity and missing values [3, 6, 17, 27]. The
method does not make any assumptions about the functional relationship between the
response variable and the predictor variables. The MARS modelling approach overcomes
the major drawbacks of using artificial neural networks which have long training processes,
interpretive difficulties and an inability to determine the relative importance of potential
input variables. In the MARS paradigm the modelling space is divided into subregions
and then fits in each subregion simple linear regression models. The model building
process occurs in two steps: the forward stepwise algorithm and the backward stepwise
algorithm. In the forward stepwise step the MARS algorithm constructs a large number
of basis functions which over-fits the data. In the backward stepwise step basis functions
are deleted in order of least contribution using the generalised cross validation (GCV)
criterion [5]. The general MARS model may be written as

f(x) = α0 +
M∑

m=1

αmBm(x), (2)

where

Bm(x) =
Km∏
k=1

[
skm

(
xv(k,m) − tkm

)]
is a basis function, α0 and αm are parameters, M is the number of basis functions, Km

is the number of knots, skm takes on values of either 1 or −1 indicating the right or left
sense of the associated step function, v(k,m) is the label of the independent variable and
tkm indicates the knot location. The MARS algorithm selects variables and values of those
variables for knots of the hinge functions.

The GCV criterion is a measure of the goodness of fit which takes into account the residual
error and the model complexity. In its simplest form the GCV criterion may be written
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as

GCV(M) =
1
N

∑N
i=1

[
yi − f̂M (xi)

]2
[
1− C(M)

N

]2 , (3)

where N is the sample size, and C(M) is the cost-penalty measure of a model containing
M basis functions. The numerator measures the lack of fit on the M basis function model
f̂M (xi) and the denominator represents the penalty for the model complexity C(M). As
in [9], the complexity cost function may be written as

C(M) = trace(B(BT B)−1BT ) + 1,

where B is the M×N data matrix of the M (nonconstant) basis functions (Bij = Bi(xj)).
The best model is one with the lowest GCV criterion value.

The three general MARS models used in this paper are

zt = a0 + c1 max{0, xpt − tw}+ c2 max{0, xpt − ts}

+
7∑

d=1

αdDdt +
12∑

j=1

τjMjt + µHt + δHt−1 + λHt+1 + εt, (4)

zt = ω0 + c3 max{0, Tt − Tref}+ c4 max{0, Tref − Tt}

+
7∑

d=1

αdDdt +
12∑

j=1

τjMjt + µHt + δHt−1 + λHt+1 + εt (5)

and

zt = β0 + c5 max{0, Tt − Tref}+ c6 max{0, Tref − Tt}+ εt, (6)

where a0, ω0, β0 and c1, . . . , c6 are constants, and where the parameters have meanings as
declared in §3.1.

4 Results and discussion

The forecast results obtained via the piecewise linear regression model and the MARS
models are presented in this section.

4.1 Piecewise linear regression model

Three different piecewise linear functions for modeling the peak demand (zt) and peak
temperature (xpt) relationship were proposed in (1). The values of tw and ts are taken as
17.5◦C and 24◦C, respectively. These values were determined from a visual inspection of
the graph in Figure 4. Piecewise linear regression models were fitted for various reference
temperatures in the interval 17◦C – 24◦C, without any significant improvements in the
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results. The reference temperature (Tref) has been selected as 20.5◦C, as mentioned before.
The resulting piecewise linear function is

zt = β0 + β1t+ β2(xpt − 17.5)x1t + β3(xpt − 24)x2t +
7∑

d=1

αdDdt

+
12∑

j=1

τjMjt + µHt + δHt−1 + λHt+1 +Rt, (7)

where Rt = φ1Rt−1 + φ2Rt−2 + φ5Rt−5 + φ7Rt−7 + εt, as already stated.

Out of the 3 636 data points, which span the period 1 January 2000 to 14 December
2009, the 3 592 data points (representing the period 1 January 2000 to 31 October 2009)
were used for developing the models, while the remaining 44 observations were used for
validation purposes. Table 1 shows the parameter estimates of the best piecewise linear
regression model,

zt = 26274 + 1.9t− 232.8(xpt − 17.5)x1t + 21.0(xpt − 24)x2t − 881.7D5t

− 2279.0D6t − 2551.6D7t − 1813.4Ht − 810.9Ht−1 − 248.7Ht+1

+ 0.819zt−1 + 0.013zt−2 + 0.056zt−5 + 0.094zt−7. (8)

The coefficient of t is positive, showing a positive linear trend. The dummy variable x1t

is negative, showing that if the peak temperature decreases by one degree from 17.5◦C,
electricity demand increases by 232.8 MW. The coefficient of x2t in (1) is positive, showing
that if the temperature increases by one degree from 24◦C, electricity demand increases
by 21 MW. This shows that electricity demand is more sensitive to winter conditions than
to summer conditions. All the coefficients of the dummy variables representing Friday,
Saturday, Sunday, holiday, day before holiday and day after holiday are negative. This
shows that there is a decrease in demand during these periods. Of the three days of the
week, the largest decrease occurs on a Sunday. During holidays, demand for electricity
decreases significantly compared to a day before and after a holiday. The smallest decrease
is experienced on days after holidays.

Par c Ht Ht−1 Ht+1 Friday Saturday Sunday

Coef 26274 −1813.4 −810.9 −248.7 −881.7 −2279 −2551.6
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Par t x1t x2t φ1 φ2 φ5 φ7

Coef 1.9 −232.8 21 0.819 0.013 0.056 0.094
(0.000) (0.000) (−0.4963) (0.000) (−0.4679) (0.000) (0.000)

Table 1: Parameter estimates for the piecewise linear regression model.

4.2 The MARS models

The values of the various parameters in the MARS models in (4)–(6) are estimated from the
data in this section. The forecasting results obtained via the models are also interpreted.
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4.2.1 Model 1

The model in (1) is a simple MARS model which was used to determine the reference tem-
perature separating the winter periods from the summer periods of the DPD-temperature
relationship. The DPD is the dependent variable in this model with the peak temperature
as the regressor variable. The best MARS model achieved a GCV value of 8.66744× 106

and the reference temperature was found to be 20.9◦C. The complete model may be written
as

zt = β0 + c5 max{0, xpt − Tref}+ c6 max{0, Tref − xpt}.
= 27833.6− 125.423 max{0, xpt − 20.9}+ 384.209 max{0, 20.9− xpt}. (9)

A plot of the value of zt as a function of xpt may be found in Figure 5. If temperature
decreases by a degree from 20.9◦C, the DPD increases by 384.209MW. Similarly, an in-
crease by one degree above 20.9◦C results in a DPD decrease of 125.423MW. This shows
that the DPD is more sensitive to low temperatures. This model was used to determine
the number of heating degree days and also the number of cooling degree days.

D
P

D
(M

W
)

xpt

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

27000

28000

29000

30000

31000

32000

33000

Figure 5: DPD as a function of temperature according to MARS model 1.

4.2.2 Model 2

Out of the 24 predictor variables, the MARS algorithm selected eight variables as the
most important. These variables are shown in Table 2 in order of their importance. The
piecewise linear GCV value was 9.02477× 105.
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Variable Importance GCV value
t 100.000 7.27027× 106

xpt 58.25802 3.06371× 106

D7t 34.58035 1.66394× 106

D6t 31.78196 1.54569× 106

Ht 18.85743 1.12892× 106

Ht−1 14.80247 1.04201× 106

D5t 12.35992 9.99758× 105

Ht+1 8.76643 9.51416× 105

Table 2: Important predictor variables according to the MARS models.

The final model is

DPD = 24676.4− 1.74 max{0, t− 2735} − 2.99 max{0, 2735− t}
− 235.38 max{0, xpt − 19.2}+ 411 max{0, 19.2− xpt}+ 2598.11(D7t = 0)
− 2367.12(D6t = 1) + 2722.32(Ht = 0) + 924.86(D5t = 0)
+ 500.43(Ht−1 = 0) + 1280.82(Ht+1 = 0)(Ht−1 = 0). (10)

The coefficient of basis function 1 is negative, meaning that if the trend is above 2 375,
electricity demand decreases at a rate of 1.74 MW and when its below this knot, it de-
creases at a rate of 2.99MW. The trend component shows that the DPD is increasing at a
decreasing rate. The coefficient of basis function 3 is negative, implying that if the peak
temperature increases by 1◦C from 19.2◦C, the DPD decreases by 235.381MW and if the
peak temperature decreases by 1◦C below this knot, the DPD increases by 411MW. The
coefficient for basis function 5 is positive, meaning if the day of the week is not a Sunday,
then the DPD increases by 2598.11MW, but if the day is Saturday, there is a decrease
in the DPD of 2367.12MW. The DPD increases by 2722.32MW if day t is not a holiday
and increases by 500.434MW if it is not a day before a holiday. There is one bivariate
interaction between a day before and after a holiday. If day t is not a day before or after
a holiday, the DPD increases by 1280.82MW. If day t is not a Friday, there is an increase
in DPD of 924.862MW.

4.2.3 Model 3

The third model is a MARS model for the Average Daily Energy Sent Out (ADESO)
with average daily temperature (ADT) as the predictor variable. The model identifies the
winter-sensitive, weather-neutral and summer-sensitive periods. The resulting model is

ADESO = 564863 + 7332.94 max{0, 22−ADT}+ 3714.8 max{0,ADT− 16}. (11)

The piecewise linear GCV value was 3.82422 × 109. The value achieved by the model is
displayed in the graphical plot of ADESO against ADT, shown in Figure 6.

If the average daily temperature is less than or equal to 16◦C, we use

ADESO = 564863 + 7333 max{0, 22−ADT}. (12)

That is, if the temperature decreases by 1◦C (e.g. from 16◦C to 15◦C), electricity demand
increases by 7333MW, which is about a 1.2% increase.
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If average daily temperature is greater than or equal to 22◦C, we use

ADESO = 564863 + 3715 max{0,ADT− 16}. (13)

If the temperature increases by 1◦C (e.g. from 22◦C to 23◦C), electricity demand increases
by 3715MW, which is about a 0.6% increase.

For an average daily temperature between 16◦C and 22◦C, we use the full model

ADESO = 564863 + 7333 max{0, 22−ADT}+ 3715 max{0,ADT− 16}. (14)

If the temperature decreases by 1◦C in the range 16◦C–22◦C (e.g. from 22◦C to 21◦C),
electricity demand increases by 3618MW, which is about s 0.6% increase. The MARS plot
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Figure 6: Scatter plot of average daily energy sent out against average daily temperature.

is shown in Figure 7. The modelling space is divided into three subspaces, separated by
two knots at 16◦C and 22◦C, as shown in Figure 7.

4.3 Evaluating the goodness of fit of the models

The root mean squared error (RMSE) was used to evaluate the goodness of fit achieved
by the piecewise regression model and the MARS model for peak load demand forecasting
in the out-of-sample predictions for the period 1 November to 14 December 2009. As
mentioned, the training period was 1 January 2000 to 31 October 2009. The RMSE was
calculated as

RMSE =

√√√√√ n∑
t=1

(zat − zft)
2

n
, (15)

where n is the number of out-of-sample forecast data points and zat − zft represents
the forecast errors. The terms zat and zft are the actual DPD and its future forecast,
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Figure 7: MARS plot of model 3.

respectively. The goodness of fit results for thepiecewise linear and MARS models are
shown in Table 3. It may be seen from the table that the MARS models outperform the
piecewise linear regression model convincingly.

Model R-Squared RMSE Validation
Adjusted (Testing Period)

Piecewise Linear 0.91626 940.843
MARS Model 2 0.98096 446.013

Table 3: Goodness of fit results for the piecewise and MARS models.

The forecasts using MARS model 2, approximate 95% prediction intervals and the actual
DPD values for the first seven days of November 2009 are given in Table 4. The actual
peak demand falls within the prediction interval for all seven days. The MARS model
seems to be useful for making short-term forecasts of daily peak demand.

5 Conclusions

A MARS model was developed for predicting daily electricity peak demand and the per-
formance of the model was compared to that of a piecewise linear regression model. There
were 3 636 data points, spanning the period 1 January 2000 to 14 December 2009. Of
these, 3 592 data points were used for developing the models, while the remaining 44 ob-
servations were reserved for validation purposes. The MARS model outperformed the
piecewise linear regression model convincingly and is easy to explain to management. The
model is capable of clustering together categories of variables that have similar effects on
the dependent variable.

Future research may include a sensitivity analysis with respect to daily and seasonal peak



Daily peak electricity load forecasting in South Africa 109

electricity demand performed for each of the provinces of South Africa and the development
of a two-stage stochastic integer recourse model with the objective of optimising electricity
distribution. Another interesting area to investigate would be the development of a hybrid
model integrating the MARS approach with neural network techniques and also the use
of other adaptive techniques, such as classification and regression trees (CARTs), TreeNet
and Random Forests.

Date Day Forecast Prediction Interval Actual DPD Actual Peak
(t) (zft) Approx 95% (zat) Temp (xpt)

Sun, Nov 1 3593 29219.75 (28009.53, 30485.30) 29187 20.2
Mon, Nov 2 3594 31767.53 (30046.46, 33593.91) 31640 18.9
Tue, Nov 3 3595 31866.16 (29941.48, 33924.75) 31882 20.2
Wed, Nov 4 3596 31751.65 (29664.31, 33999.46) 31641 18.3
Thur, Nov 5 3597 31678.71 (29492.76, 34047.10) 31832 20.2
Frid, Nov 6 3598 30878.02 (28669.81, 33272.95) 30704 22.1
Sat, Nov 7 3599 29516.36 (27348.04, 31875.72) 29650 20.8

Table 4: Forecast and Actual DPD for the first seven days of November 2009.
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Appendix

This appendix contains a brief derivation of the equations of the three demand-temperature
lines from

zt = β0 + β1t+ β2(xpt − tw)x1t + β3(xpt − ts)x2t +
7∑

d=1

αdDdt

+
12∑

m=1

τmMmt + µHt + δHt−1 + λHt+1 +Rt. (16)

Let
7∑

d=1

αdDdt =
12∑

m=1

τmMmt = µHt = δHt−1 = λHt+1 = 0. (17)

Substituting (17) into (16) we obtain three equations for winter-sensitive, summer-sensitive
and non-weather sensitive months.

For winter-sensitive months, i.e. xpt < tw, x1t = 1, x2t = 0, we obtain

E(zt) = β0 + β1(xpt − tw)(1)+β2(xpt − ts)(0)
= β0 + β1(xpt − tw)
= (β0 − β1tw) + β1xpt. (18)

For summer-sensitive months, i.e. xpt > ts, x1t = 0, x2t = 1, we obtain

E(zt) = β0 + β1(xpt − tw)(0)+β2(xpt − ts)(1)
= β0 + β2(xpt − ts)
= (β0 − β2ts) + β2xpt. (19)

Finally, for non-weather sensitive months, i.e. tw ≤ xpt ≤ ts, x1t = x2t = 0, we obtain

E(zt) = β0, (20)

where β0 represents the mean daily peak demand observed during the non-weather sensi-
tive period.
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