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Abstract

Drug resistance to single therapeutic treatment in HIV infected individuals has promoted
research into combined treatments. In this paper we propose a stochastic model under
combined therapeutic treatment by extending the model of HIV pathogenesis under treatment
by anti-viral drugs given in [Perelson AS, Neumann AU, Markowits M, Leonard JM
& Ho DD, 1996, HIV-1 dynamics in vivo virion clearance rate, infected cell life span, and
viral generation time, Science New Series, 271, pp. 1582–1586]. Variance and co-variance
structures of variables are obtainable via this approach in addition to the mean numbers of
free HIV, infectious free HIV and non-infectious free HIV that were obtained by Perelson
et al. Comparing simulated data for before and after treatment indicates the importance of
combined treatment and its overall effect(s).
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1 Introduction

In HIV infected individuals, the infection exhibits a long asymptomatic phase (after the
initial high infectious phase) of approximately 10 years on average before the onset of
AIDS. During this incubation period which some call the clinical latency period, the
individuals appear to be well and may contribute significantly to the spread of the epidemic
in a community. Some clinical markers such as the CD4 cell count and the RNA viral load
(viraemia) provide information about the progression of the disease in infected individuals.
Also, the clinical latency period of the disease may provide a sufficiently long period during
which to attempt an effective suppressive therapeutic intervention in HIV infections.
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The knowledge of principal mechanisms of viral pathogenesis, namely the binding of the
retrovirus to the gp120 protein on the CD4 cell, the entry of the viral RNA into the
target cell, the reverse transaction of viral RNA to viral DNA, the integration of the viral
DNA with that of the host, the viral regulatory processes mediated through regulatory
proteins such as tat and rev, and the action of viral protease in cleaving viral proteins into
mature products have led to the design of drugs (chemotherapeutic agents) to control the
production of HIV. Principal directions along which drugs (such as AZT and Ritonavir (see
Shafer, et al. (2001)) are currently attempted include inhibition of the reverse transcriptase
of HIV and inhibition of the protease of HIV.

With the spread of the HIV-AIDS pandemic and in the absence of an “effective” vaccine
or cure, therapeutic interventions are still heavily relied on. Several research studies have
been carried out in the recent past, both theoretically and experimentally, to analyse the
impact of therapy on the viral load in HIV infected persons in order to ascertain the
effectiveness of the treatment (see, for example, Nelson & Perelson (1995), Wei, et al.
(1995), Perelson, et al. (1996), Mellors, et al. (1997), Nijhuis, et al. (1998), Tan and
Xiang (1999) and Bangsberg, et al. (2004)).

Nelson and Perelson (1995) proposed a mathematical model of therapeutic intervention to
delay the onset of AIDS by the stimulated production of genetically engineered defective
interfering virus (DIVs) that interferes with the HIV replication process. A DIV is a
deletion mutant and it is incapable of replicating by itself in a host cell (CD4 cell), but
may replicate if the host cell is co-infected with HIV. Assuming that DIV depends on HIV
to multiply, Nelson and Perelson (1995) constructed a mathematical model describing the
interaction among HIV, DIV and uninfected CD4 cells, and they analysed the co-evolution
of DIV and HIV in a single compartment. Their model is essentially a system of ordinary
differential equations involving eight variables and several parameters representing the
activities of DIV and HIV. By considering a higher level of DIV activity in the production
of co-infected CD4 cells, they investigated the possibility of blocking the production of
HIV so that the burden of HIV on the population of CD4 cells is reduced.

In the paper of Wei, et al. (1995), based upon the results of several experimental studies
of the dynamics of HIV replication in the presence of antiretroviral agents, it was reported
that HIV had enormous potential in showing resistance to drugs by undergoing several
mutations and a rapid and virtually complete replacement of wild-type HIV by a drug
resistant virus occurred when anti-viral drugs were administered. Nijhuis, et al. (1998)
noticed high drug resistance and unique combination of mutation in individuals when they
proposed a stochastic model to test the resistance to protease inhibitors, although there
was a reduced effective free HIV population (500–15 000).

Perelson, et al. (1996) presented a mathematical model for analysing the kinetic picture of
HIV pathogenesis subject to the administration of a drug, called Ritonavir, to inhibit po-
tently the protease of HIV. In their paper, they represented the dynamics of cell infection
and viral production after treatment with Ritonavir by means of a set of ordinary differen-
tial equations, adopting a deterministic approach and assuming that the viral inhibition of
Ritonavir was 100% so that all newly produced virions after the treatment with Ritonavir
were non-infectious. By using the mathematical model and non-linear least squares fitting
of the viral load data of five HIV-1 infected patients, they were able to obtain estimates
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of the rate of viral clearance, the infected cell life-span and the average viral generation
time.

Tan and Xiang (1999) developted a state-space model of HIV pathogenesis in HIV infected
individuals undergoing combination treatment (i.e. a treatment with a combination of anti-
viral drugs such as AZT and Ritonavir which can inhibit either the reverse transcriptase or
the protease of HIV). Their model included a mathematical description of the production of
infectious free HIV and non-infectious free HIV, by extending the model of Perelson, et al.
(1996) and developing procedures for estimating and predicting the number of uninfected
CD4 cells, infectious free HIV, non-infectious free HIV and HIV infected CD4 cells. They
not only extended the model by Perelson, et al. (1996) to a stochastic model, but also
applied their model to data of patients considered by Perelson, et al. (1996). Their model
is discrete in time and comprises a system of stochastic difference equations which were
derived from the biological specifications of the HIV-replication cycle.

Since Perelson, et al. (1996) considered a deterministic model, and Tan and Xiang (1999)
developed a state-space model, the present authors consider a stochastic model of the
growth of the HIV population which carries over the principle of the virology of HIV,
the life-cycle of HIV and allows the production of non-infectious (defective) free HIV
to reduce the severity of HIV in a HIV-infected individual undergoing a combination-
therapeutic treatment. Our aim in this paper is to use a stochastic model obtained by
extending the model of Perelson, et al. (1996) to determine the number of uninfected T4
cells, infected T4 cells and free HIV in an infected individual by examining the combined
antiviral treatment of HIV. This is important because it helps in determining the efficacy
of methods used in the research areas of pathogenesis, progression and combined treatment
of HIV. Obtaining the variance and co-variance structures of variables representing the
number of virus producing cells, and the levels of infectious free and non-infectious free HIV
is one of the main contributions of this paper. These variance and co-variance structures
may sometimes be difficult to obtain for stochastic models (unlike the case with the mean
structure), but being able to obtain these structures is expected to shed light on the type of
relationship between the variables. Based on the model, we obtain the expected numbers
of HIV infected cells, infectious free HIV and non-infectious free HIV at any time t, and
derive conclusions for the reduction or elimination of HIV in HIV-infected individuals.

The organisation of this paper is as follows: In Section 2, we formulate our stochastic
model describing the production and the clearance of virus producing cells, infectious free
HIV and non-infectious free HIV in a therapeutic environment. In Section 3, we derive
a system of differential difference equations for the probability function associated with
the process and also obtain a partial differential equation for the probability generating
function of the numbers of HIV-infected CD4 cells, infectious free HIV and non-infectious
free HIV at time t. The population measures are derived in Section 4. In Section 5, we
provide a numerical illustration to demonstrate the impact of using combination therapy
to control the progression of HIV, and we also obtain variance and co-variance structures
of the variables. Some concluding remarks follow in Section 6.
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2 Formulation of the model

Assume that at time t = 0, a combination therapy treatment is initiated in an HIV-infected
individual. We assume that the therapeutic intervention inhibits either the enzyme action
of reverse transcriptase or that of the protease of HIV in a HIV-infected cell. A HIV-
infected cell with the inhibited HIV-transcriptase may be considered a dead cell as it
cannot participate in the production of the copies of any type of HIV. On the other hand,
an HIV-infected cell in which the reverse transcription has already taken place and the
viral DNA is fused with the DNA of the host, but the enzyme activity of HIV-protease
is inhibited, undergoes a lysis releasing infectious free HIV and non-infectious free HIV.
A non-infectious free HIV cannot successfully infect a CD4 cell. Accordingly, at any time
t, the blood of the infected person contains virus-producing HIV-infected cells, infectious
free HIV and non-infectious free HIV.

A virus producing cell existing at time t in the therapeutic environment undergoes one of
the following transitions during the interval (t, t+ ∆):

1. it splits into two HIV-infected cells with probability λ1∆ + o(∆);
2. it undergoes a lysis with probability υ∆ + o(∆), producing a random number K1 of

infectious free HIV and a random number K2 of non-infectious free HIV;
3. it dies with probability µ∆ + o(∆);
4. it remains as it is with probability 1 – (λ1 + υ + µ)∆ + o(∆).

We assume that K1 and K2 have the joint probability generating function h(s1, s2) defined
by

h(s1, s2) =
∞∑
l=0

∞∑
m=0

πlms
l
1s
m
2 ,

where πlm represents the probability that l infections free HIV and m non-infectious free
HIV are released at the lysis occurring at any time. An infectious free HIV existing at
time t in the blood of the individual may undergo one of the following transitions during
the interval (t, t+ ∆):

1. it infects a T4 cell with probability λ2∆ + o(∆), converting the cell into a virus
producing cell;

2. it dies with probability c∆ + o(∆);
3. it remains as it is with probability 1 – (λ2 + c)∆ + o(∆).

The population of non-infectious free HIV does not grow by replication of its members,
but grows by admitting bulk immigrations which occur at the lysis of HIV-infected cells.
A non-infectious HIV existing at time t dies during the interval (t, t+ ∆) with probability
c∆ + o(∆).

Let X(t) be the number of virus producing cells (these are cells that produce copies of
the virus to infect other cells) at time t. Let V (t) and D(t) be respectively the number of
infectious free HIV (these are HIV in the body that infect cells in the body) and the number
of non-infectious free HIV (these are HIV in the body that do not infect cells in the body)
at time t. For simplicity, we assume that X(0) = N , V (0) = n, D(0) = 0. We proceed to
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discuss the probability generating function of the vector process (X(t), V (t), D(t)) in the
next section.

3 Probability generating function

The probability generating function of (X(t), V (t), D(t)) is defined by G(u1, u2, u3; t) =
E[uX(t)

1 u
V (t)
2 u

D(t)
3 ]. From the initial condition, it is easy to note that G(u1, u2, u3; 0) =

E[uN1 u
n
2u

0
3] = E[uN1 u

n
2 ]. To derive an equation for G(u1, u2, u3; t), we require the probabil-

ity function which is defined for any time t by p(i, j, k; t) = Pr{X(t) = i, V (t) = j,D(t) =
k}, where i, j, k = 0, 1, 2. . . We proceed to derive a system of differential-difference equa-
tions for the function p(i, j, k; t). To this end we list below the exhaustive and mutually ex-
clusive events that occur during the interval (t, t+∆) given that X(t) = i > 0, V (t) = j > 0
and D(t) = k > 0:

1. one HIV infected cell splits into two HIV-infected cells — the probability of this
event occuring is iλ1∆ + o(∆);

2. one HIV-infected cell undergoes a lysis — the probability of this event occuring is
iυ∆ + o(∆);

3. one HIV-infected cell dies — the probability of this event occuring is iµ∆ + o(∆);
4. one infectious free HIV virus infects one CD4 cell, making the CD4 cell an HIV-

infected cell — the probability of this event occuring is jλ2∆ + o(∆);
5. one infectious free HIV virus dies — the probability of this event occuring is jc∆ +
o(∆);

6. one non-infectious free HIV virus dies — the probability of this event occuring is
kc∆ + o(∆);

7. none of the above occurs.

Using probabilistic arguments, we obtain

p(i, j, k; t+ ∆) = p(i, j, k; t) [1− {i(λ1 + ν + µ) + j(λ2 + c) + kc}∆]
+ p(i− 1, j, k; t)(i− 1)λ1∆ + p(i+ 1, j, k; t)(i+ 1)µ∆

+
j∑
l=0

k∑
m=0

πlmp(i+ 1, j − l, k −m; t)(i+ 1)ν∆

+ p(i− 1, j + 1, k; t)(j + 1)λ2∆
+ p(i, j + 1, k; t)(j + 1)c∆ + p(i, j, k + 1; t)(k + 1)c∆. (1)

From (1), we readily obtain the expressions

p′(i, j, k; t) =− {i(λ1 + ν + µ) + j(λ2 + c) + kc}p(i, j, k; t) + (i− 1)λ1p(i− 1, j, k; t)

+ (i+ 1)ν
j∑
l=0

k∑
m=0

πlmp(i+ 1, j − l, k −m; t) + (i+ 1)µp(i+ 1, j, k; t)

+ (j + 1)λ2p(i− 1, j + 1, k; t) + (j + 1cp(i, j + 1, k; t)
+ (k + 1)cp(i, j, k + 1; t), i > 0 (2)
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and

p′(0, j, k; t) =− j(λ2 + c) + kc}p(0, j, k; t) + ν

j∑
l=0

k∑
m=0

πlmp(1, j − l, k −m; t)

+ µp(1, j, k; t) + (j + 1)cp(0, j + 1, k; t) + (k + 1)cp(0, j, k + 1; t). (3)

Now, we have

G(u1, u2, u3; t) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

p(i, j, k; t)ui1u
j
2u
k
3,

and so, by using (2) and (3), we obtain

∂G

∂t
= [(µ− λ1u1)(1− u1) + ν {h(u2, u3; t)− u1}]

∂G

∂u1

+ [λ2(u1 − u2) + c(1− u2)]
∂G

∂u2
+ c(1− u3)

∂G

∂u3
. (4)

Equation (4) is not solvable, even for any simple form of h(u2, u3; t). However, it is possible
to obtain the moment-structure of (X(t), V (t), D(t)). We do this in the next section.

4 The moment-structure of (X(t), V (t), D(t))

We introduce the variables

Mξ(t) = E[ξ(t)],

M
(2)
ξ (t) = E[ξ(t)(ξ(t)− 1)],

Mξη(t) = E[ξ(t)η(t)],

V ar(ξ(t)) = E[ξ(t)2]− (E[ξ(t)])2, and
Cov(ξ(t), η(t)) = E[ξ(t)η(t)]− E[ξ(t)]E[η(t)]

together with the parameters m1, m2, m11, m22 and m12 which are respectively the deriva-
tives ∂h(s1,s2)

∂s1
, ∂h(s1,s2)

∂s2
, ∂

2h(s1,s2)
∂s21

, ∂
2h(s1,s2)
∂s22

and ∂2h(s1,s2)
∂s1∂s2

, all evaluated at (s1, s2) = (1, 1).

Furthermore, define A = (u1 = 1, u2 = 1, u3 = 1), α = µ − λ1 + ν and β = λ2 + c.
Differentiating (4) once with respect to u1, u2 and u3 at A, we obtain

∂MX(t)
∂t

+ αMX(t) = λ2MV (t), (5)

∂MV (t)
∂t

+ βMV (t) = νm1MX(t), and (6)

∂MD(t)
∂t

+ cMD(t) = νm2MX(t), (7)
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respectively. Differentiating (4) twice with respect to u1, u2 and u3 at A, we obtain

∂M
(2)
X (t)
∂t

+ 2αM (2)
X (t) = 2 [λ1MX(t) + λ2MXV (t)] , (8)

∂M
(2)
V (t)
∂t

+ 2βM (2)
V (t) = ν [m11MX(t) +m1MXV (t)] , and (9)

∂M
(2)
D (t)
∂t

+ 2cM (2)
D (t) = ν [2m2MXD(t) +m22MX(t)] , (10)

respectively. Finally, differentiating (4) with respect to u1 and u2, with respect to u2 and
u3 and with respect to u1 and u3 at A, we obtain

∂MXV (t)
∂t

+ (α+ β)MXV (t) = νm1M
(2)
X (t) + λ2M

(2)
V (t), (11)

∂MV D(t)
∂t

+ (β + c)MXD(t) = ν [m1MXD(t) +m12MX(t) +m2MXV (t)] , and (12)

∂MXD(t)
∂t

+ (α+ c)MXD(t) = νm2M
(2)
X (t) + λ2MV D(t), (13)

respectively. Writing these equations in the matrix form, we therefore obtain the matrix
differential equation

∂

∂t

 MX(t)
MV (t)
MD(t)

 = R

 MX(t)
MV (t)
MD(t)

 , (14)

where

R =

 −α λ2 0
νm1 −β 0
νm2 0 −c

 .

The characteristic equation of the matrix R is given by

(c+ λ) [(α+ λ)(β + λ)− νm1λ2] = 0. (15)

Solving (15), we obtain the characteristic values

−c and
−(α+ β)±

√
(α− β)2 + 4νm1λ2

2

of R, which are real and distinct. The corresponding characteristic vectors are

R1 =

 0
0
1

 , R2 =

 λ2(c+ θ1)
(c+ θ1)(α+ θ1)

νm2λ2

 and R3 =

 λ2(c+ θ2)
(α+ θ2)(c+ θ2)

νm2λ2

 ,

respectively, where

θ1 =
−(α+ β) +

√
(α− β)2 + 4νm1λ2

2
and

θ2 =
−(α+ β)−

√
(α− β)2 + 4νm1λ2

2
.
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Accordingly, the general solution of (14) is

 MX(t)
MV (t)
MD(t)

 = C1R1e
−ct + C2R2e

θ1t + C3R3e
θ2t,

where C1, C2 and C3 are constants. In our model, we have assumed thatX(0) = N , V (0) =
n, D(0) = 0 and so we have the following initial conditions: MX(0) = N , MV (0) = n
and MD(0) = 0. Consequently, the constants C1, C2 and C3 satisfy the system of linear
equations λ2(c+ θ1)C2 + λ2(c+ θ2)C3 = N , (c+ θ1)(α+ θ1)C2 + (c+ θ2)(α+ θ2)C3 = n
and C1 + νm2λ2C2 + νm2λ2C3 = 0. Solving this system, we obtain

C1 =
−νm2{N(c+ α+ θ1 + θ2)− nλ2}

(c+ θ1)(c+ θ2)
,

C2 =
N(α+ θ2)− nλ2

λ2(c+ θ1)(θ2 − θ1)
, and

C3 =
−N(α+ θ1) + nλ2

λ2(c+ θ2)(θ2 − θ1)
.

Hence

MX(t) =
N(c+ θ2)(α+ θ2)− nλ2(c+ θ2)

(c+ θ2)(θ2 − θ1)
e−θ1t

+
−N(c+ θ1)(α+ θ1) + nλ2(c+ θ1)

(c+ θ1)(θ2 − θ1)
e−θ2t, (16)

MV (t) =
N(c+ θ2)(α+ θ2)− nλ2(c+ θ2)

λ2(c+ θ2)(θ2 − θ1)
(α+ θ1)eθ1t

+
−N(c+ θ1)(α+ θ1) + nλ2(c+ θ1)

λ2(c+ θ1)(θ2 − θ1)
(α+ θ2)eθ2t, and (17)

MD(t) =
νm2{nλ2 −N(c+ α+ θ1 + θ2)}

(c+ θ1)(c+ θ2)
e−ct

+
vm2{N(c+ θ2)(α+ θ2)− nλ2(c+ θ2)}

(c+ θ1)(c+ θ2)(θ2 − θ1)
eθ1t

+
vm2{nλ2(c+ θ1)−N(α+ θ1)(c+ θ1)}

(c+ θ1)(c+ θ2)(θ2 − θ1)
eθ2t. (18)

We have not obtained explicitly the expressions for M (2)
X (t),M (2)

D (t),MXV (t),MV D(t) and
MXD(t). However, we are able to solve completely the system (5)–(13) in the special case
where no infectious free virus is released at the lysis of every HIV-infected cell treated
with combination therapy. It holds for this special case that m1 = 0, m11 = 0, m12 = 0.
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Consequently,

MX(t) = Ne−αt − nλ2

(
e−αt − e−βt

α− β

)
, (19)

MV (t) = ne−βt, (20)

MD(t) = νm2

[
nλ2 −N(c− β)
(c− α)(c− β)

e−ct − nλ2 −N(α− β)
(c− α)(α− β)

e−αt

+
nλ2

(c− β)(α− β)
e−βt

]
, (21)

M
(2)
V (t) = n(n− 1)e−2βt, (22)

MXV (t) = Nne−(α+β)t +
λ2n(n− 1)
α− β

{e−2βt − e−(α+β)t}, (23)

MV D(t) =
Nnνm2

c− α
{e−(α+β)t − e−(β+c)t− νm2λ2n(n− 1)

(α− β)(β − c)(c− α)
{(c− α)e−2βt

+ (β − c)e−(α+β)t + (α− β)e−(β+c)t}, (24)

M
(2)
X (t) =

2λ1{(α− β)N − nλ2}
α(α− β)

e−αt +
2λ1λ2n

(α− β)(2α− β)
e−βt+

λ2
2n(n− 1)
(α− β)2

e−2βt

+
2λ2{Nn(α− β)− λ2n(n− 1)}

(α− β)2
e−(α+β)t

+
[
N(N − 1)α(2α− β)− 2λ1{(2α− β)N − nλ2}

α(2α− β)

]
e−2αt

+
[
λ2{λ2n(n− 1)− 2Nn(α− β)}

(α− β)2

]
e−2αt, (25)

MXD(t) = A1e
−αt +A2e

−βt +A3e
−2αt +A4e

−2βt +A5e
−(α+c)t

+A6e
−(β+c)t +A7e

−(α+β)t, and (26)

M
(2)
D t = 2νm2

[
A1

{
e−2ct − e−αt

α− 2c

}
+A2

{
e−2ct − e−βt

β − 2c

}
+ A3

{
e−2ct − e−2αt

2(α− c)

}
+A4

{
e−2ct − e−2βt

2(β − c)

}
+ A5

{
e−2ct − e−(α+c)t

α− c

}
+A6

{
e−2ct − e−(β+c)t

β − c

}
+A7

{
e−2ct − e−(α+β)t

α+ β − 2c

}]

+ νm22

[{
N − nλ2

α− β

}{
e−2ct − e−αt

α− 2c

}
+

nλ2

α− β

{
e−2ct − e−βt

β − 2c

}]
, (27)

where

A1 =
2λ1 {N(α− β)− λ2n}

αc(α− β)
,

A2 =
2λ1λ2n

(α− β)(2α− β)(α− β + c)
,
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A3 =
N(2α− β) {νm2(N − 1)α− 2λ1}+ 2λ1λ2n

α(2α− β)(c− α)
+
νm2λ2n {λ2(n− 1)− 2N(α− β)}

(α− β)2(c− α)
,

A4 =
νm2λ

2
2n(n− 1)

(α− β)2(c− β)
,

A5 =
νm2λ2n {N(α− 2β − c)− λ2(n− 1)}

(c− β)(α− β)(α− 2β − c)
+

2νm2λ2n {N(α− 2β − c)− λ2(n− 1)}
(c− β)(c− α)(α− 2β + c)

+
{2λ1 − νm2 (N − 1) c}N(α− β + c)− 2λ1λ2n

c(c− α)(α− β)(α− β + c)
,

A6 =
νm2λ2n {λ2(n− 1)−N(c− β)}

(c− α)(c− β)(α− β)
, and

A7 =
2νm2λ2n {N(α− β)− λ2(n− 1)}

(α− β)2(c− β)
+
νm2λ2n {N(α− β)− λ2(n− 1)}

(c− α)(c− β)(α− β)
.

Although the above expressions for MXD(t) and M
(2)
D (t) are somewhat complicated, we

have presented them here for the sake of completeness. However, for the purpose of
numerical illustration considered in the next section, we prefer the integral expressions

MD(t) = νm2

∫ t

0
e−cuMx(t− u) du, (28)

MXV (t) = Nn+ λ2

∫ t

0
e−(α+β)uM

(2)
V (t− u) du, (29)

MV D(t) = νm2

∫ t

0
e−(β+c)uMXV (t− u) du, (30)

M
(2)
X (t) = N(N − 1) + 2λ2

∫ t

0
e−2αuMXV (t− u) du+ 2λ1

∫ t

0
e−2αuMX(t− u) du, (31)

MXD(t) = νm2

∫ t

0
e−(α+c)uM

(2)
X (t− u) du+ λ2

∫ t

0
e−(α+c)uMV D(t− u) du, and (32)

M
(2)
D (t) = 2νm2

∫ t

0
e−2cuMXD(t− u) du+ νm22

∫ t

0
e−2cuMX(t− u) du (33)

obtained from the expressions (22)–(28), where the expressions for MX(t), MV (t), MD(t)
and M

(2)
V (t) are given in (19)–(22), respectively.

5 Numerical illustration of the model

For the purpose of numerical illustration, we have extrapolated estimates from Perelson,
et al. (1996) and Tan and Xiang (1999), and we consider three cases:

Case (i): Both the mean numbers of the infectious free HIV (m1) and non-infectious free
HIV (m2) produced by a virus producing cell at the time of its lysis are greater than zero.

Case (ii): m1 = 0 and m2 6= 0 and we obtain values of the means MX(t), MV (t) and
MD(t) for the values of t ranging from 0.0 to 2.5 in steps of 0.5 for all the cases. The
results are shown in Figure 1.
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Case (iii): The second moments are evaluated by adopting Simpson’s one-third rule for
the evaluation of integrals in (28)–(33). The assumed values of the parameters are given
in Table 1 and the results are shown in Tables 2–6.

For all simulated results, we take 1 hour as 0.5 time unit.

Notation Parameters description Assumed values

C Rate of dying of a free HIV 3/day
N Number of virus producing cells at time t = 0 412 copies/ml
n Number of infectious free HIV at time t = 0 98 000/mm3

λ1 Rate of splitting of a virus producing cell 5/day/mm3 and 10/day/mm3

λ2 Rate at which a free HIV infects a CD4 cell 1/day/mm3

ν Rate of occurrence of lysis of virus producing cells 0.02/day
µ Rate of death of virus producing cells 0.4/day
m1 Expected number of infectious free HIV produced

at the time of lysis of an infected cell
200/mm3

m2 Expected number of non-infectious free HIV pro-
duced at the time of lysis of an infected cell

100/mm3

m22 Second factorial moment of the number of non-
infectious free HIV produced at the time of lysis
of an infected cell

9 900/mm6

Table 1: Assumed values of parameters used to obtain numerical results.

5.1 Case (i)

From Figure 1 and Table 2, it is easily noted that as t increases, the values of MX(t),
MV (t) and MD(t) also increase for λ1 = 5. When λ2 = 10 (the rate at which an HIV
infected cell splits into two), the values of MX(t), MV (t) and MD(t) also increase with
an increase of t (see Table 3). This shows that as the value of λ1 increases, the values of
MX(t), MV (t) and MD(t) increase significantly as functions of time, before treatment.

5.2 Case (ii)

Assume m1 = 0, m2 = 100 and m22 = 9 900. Figure 1 shows the curves for MX(t), MV (t)
and MD(t) fitted before and after treatment. It is observed that there is a remarkable
difference between the values obtained before and after treatment, especially after t = 1.5.
This shows the effectiveness of the treatment. As such, the expected number of virus
producing cells and the expected number of non-infectious free HIV decrease significantly
after treatment (effect of reverse transcriptase drugs). Furthermore, the expected numbers
of infectious free HIV is reduced to almost zero at t = 2.5, because of the effect of protease
inhibitor drugs, as they reduce the generation of infectious free HIV at the death of actively
infected T4 cells.

5.3 Case (iii)

Assume that m1 = 0, m2 = 100 and m22 = 9 900. The values of the second order moments,
namely M (2)

X (t),M (2)
D (t),M (2)

V (t),MXD(t),MXV (t) and MV D(t), are provided in Tables 5
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and 6. The variances of virus producing cells and non-infectious free HIV are so large
in comparison to those of infectious free HIV that their values increase significantly as t
increases, unlike those of infectious free HIV which decrease significantly after treatment.
The co-variance results show that there is a positive relationship between virus producing
cells and infectious free HIV.

t MX(t)× 10−5 MV (t)× 105 MD(t)× 10−4

0.50 1 1 3
1.00 15 7 38
1.50 178 80 449
2.00 2 106 943 5 307
2.50 24 870 11 131 62 665

Table 2: MX(t), MV (t) and MD(t) as a function of t (before treatment) with C = 3, N = 412,

n = 98 000, υ = 0.02, µ = 0.49, m1 = 200, m2 = 100, m22 = 9 900, λ1 = 5 and λ2 = 1.

t MX(t)× 10−5 MV (t)× 105 MD(t)× 10−5

0.50 1 2 2
1.00 130 378 204
1.50 17 324 50 286 27 111
2.00 2 303 609 6 686 681 3604 945
2.50 306 314 300 889 138 100 479 355 000

Table 3: MX(t), MV (t) and MD(t) as a function of t (before treatment) with C = 3, N = 412,

n = 98 000, υ = 0.02, µ = 0.49, m1 = 200, m2 = 100, m22 = 9 900, λ1 = 10 and λ2 = 1.

t MX(t)× 10−5 MV (t) MD(t)× 10−4

0.50 1 13 263 3
1.00 11 1 795 28
1.50 101 243 269
2.00 950 33 2 535
2.50 8 964 4 23 936

Table 4: MX(t), MV (t) and MD(t) as a function of t (after treatment) with C = 3, N = 412,

n = 98 000, υ = 0.02, µ = 0.49, λ1 = 5, λ2 = 1, m2 = 100 and m22 = 9 900.

6 Concluding remarks

In this paper we have shown the usefulness of our stochastic approach towards modelling
combined HIV treatment by obtaining the variance and co-variance structure of the num-
ber of virus producing cells at time t, the number of infectious free HIV and the number
of non-infectious free HIV at time t. In the models by Perelson, et al. (1996) and Tan
and Xiang (1999), the variance and co-variance structures were not obtained; only the ex-
pected variable values and their estimates were obtained. The numerical results reported
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t M
(2)
X (t)× 10−6 M

(2)
D (t)× 10−6 M

(2)
V (t)

0.50 1 893 195 175 901 600
1.00 15 054 2 349 3 221 750
1.50 105 300 18 217 59 008
2.00 702 573 134 013 1 081
2.50 4 510 266 969 590 20

Table 5: M
(2)
X (t), M (2)

D (t) and M
(2)
V (t) as a function of t with C = 3, N = 412, n = 98 000,

υ = 0.02, µ = 0.49, m2 = 100, m22 = 9 900, λ1 = 2.5 and λ2 = 1.

t MXV (t)× 10−6 MXD(t)× 10−6 MV D(t)× 10−6

0.50 598 605 186
1.00 255 5 925 95
1.50 120 43 175 43
2.00 70 295 546 24
2.50 51 1 948 272 17

Table 6: MXV (t), MXD(t) and MV D(t) as a function of t with C = 3, N = 412, n = 98 000,

υ = 0.02, µ = 0.49, m2 = 100, m22 = 9 900, λ1 = 2.5 and λ2 = 1.
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Figure 1: Simulated mean number of free HIV, infectious free HIV and non-infectious free HIV

before and after combined therapeutic treatment. (Units: On the horizontal axis 0.5 is 1 hour,

while on the vertical axis viral counts are measured in copies/m` of blood.)

in Section 5 showed the efficacy of our model. We have not included t = 0 (after treat-
ment) in our results; this is the time of pharmacokinetic delay, i.e. the time required for
drug absorption, drug distribution and penetration into target cells (it varies from person
to person) (Perelson, et al. (1996)).

We have used estimates extrapolated from clinical data of Perelson, et al. (1996) and Tan
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and Xiang (1999) in our numerical results. However, real life data for each time point are
yet to be used because of limited resources to obtain RNA viral loads of patients during
every 30 minutes to one hour interval. In a follow-up work, we intend to obtain such data
as in Perelson, et al. (1996) in order to test the efficacy of our model as we have done here
with simulated data.
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