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Abstract

The two dimensional oriented on-line strip packing problem requires items to be packed, one
at a time, into a strip of fixed width and infinite height so as to minimise the total height
of the packing. The items may neither be rotated nor overlap. In this paper, ten heuristics
from the literature are considered for the special case where the items are rectangles. Six
modifications to some of these heuristics are proposed, along with two entirely new shelf
algorithms. The performances and efficiencies of all the algorithms are compared in terms of
the total packing height achieved and computation time required in each case, when applied
to 542 benchmark data sets documented in the literature.
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1 Introduction

The two dimensional strip packing problem involves packing a list of items (in this case,
rectangles) into a bin (referred to as a strip) of fixed width and infinite height. The
objective is to minimise the total packing height in the strip for which rectangles do not
overlap. Each rectangle Li is specified by the pair of dimensions (h(Li), w(Li)) referring
to its height and width respectively. Ntene and Van Vuuren [22] conducted a survey on
heuristics for solving offline strip packing problems approximately. These are problems
where the entire set of rectangles to be packed is known in advance. There are, however,
applications where the entire set of rectangles to be packed is not known in advance and
problems of this nature are referred to as on-line packing problems. Applications of this
class of problems include warehouse storage [2, 3], VLSI design [14] and scheduling with
a shared resource [3, 6, 20].

In an on-line environment, rectangles are packed one at a time; rectangle Li+1 only be-
comes available once rectangle Li has been packed [2, 13, 14, 19, 20]. Another condition

∗Department of Logistics, University of Stellenbosch, Private Bag X1, Matieland, 7602, Republic of
South Africa.
†Corresponding author: Department of Logistics, University of Stellenbosch, Private Bag X1,

Matieland, 7602, Republic of South Africa, email: vuuren@sun.ac.za

157



158 N Ntene & JH van Vuuren

for a system to be fully on-line is that once a rectangle has been packed it may not be
moved at a later stage of the packing. The challenge in on-line packing problems is due
to the potential volatility of rectangle heights that have yet to be packed [19].

The main objective in this paper is to examine and compare the time efficiencies and per-
formances of a number of existing heuristics for on-line packing problems in the literature,
and to propose some improvements or suggest altogether new algorithmic approaches.
The paper is organised as follows. In §2 the mechanisms behind a number of existing
level algorithms for on-line packing problems are reviewed and illustrated by means of
a numerical example. In §3 a number of shelf algorithms from the literature are briefly
described and illustrated by means of an example. A number of algorithms for solving
on-line packing problems with additional constraints (approximately) are discussed and
illustrated by means of an example in §4. Then a number of possible modifications to
some of these procedures considered in §2–4 are presented in §5. Two entirely new shelf
algorithms are presented in §6 and finally all the algorithms are tested on a large set
of existing benchmark problem instances so that their performances and time-efficiencies
may be compared statistically in §7.

To illustrate the packing patterns produced by the various algorithms mentioned above,
all algorithms are applied to an example instance requiring 10 rectangles to be packed into
a strip of width 15 units. This is the same example instance used by Ortmann et al. [23]
to facilitate comparisons for offline packing algorithms. The rectangle dimensions (height,
width) for the example instance are shown in Table 1.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

(14, 5) (5, 4) (4, 9) (15, 1) (6, 11) (6, 2) (4, 6) (2, 5) (6, 10) (1, 7)

Table 1: Dimensions (h(Li), w(Li)) of rectangles L1, . . . , L10 used as example instance in §2–6.

2 Level Algorithms

The algorithms considered in this section are a slight variation on the algorithms inves-
tigated in [22], namely the next fit decreasing height (NFDH) [10], the first fit decreasing
height (FFDH) [10] and the best fit decreasing height (BFDH) [11] algorithms. Since we
are dealing with on-line packing problems, we do away with the pre-ordering condition in
each of these original algorithms.

In the next fit level (NFL) algorithm [11], rectangles are packed (one at a time and in
the order given) on the current level, left justified. The first level corresponds with the
bottom of the strip. If there is insufficient horizontal space on the current level to pack
the next rectangle, a horizontal line is drawn across the upper edge of the tallest rectangle
on the current level so as to create a new level above the current level. All levels below
the current level are never revisited.

In the first fit level (FFL) algorithm [11], rectangles are packed (one by one in the order
given) on the lowest level into which they fit both height-wise and width-wise; if a rectangle
does not fit into any existing level, then a new level is created exactly as in the NFL
algorithm and the rectangle in question is packed on that level.
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The best fit level (BFL) algorithm [11] is similar to the FFL algorithm, except that each
rectangle is placed on the lowest level (into which it fits both height-wise and width-wise)
with minimum residual horizontal space (the space between the right-most edge of the
last rectangle packed on a level and the right-hand boundary of the strip).

For our example instance in Table 1, total packing heights of 46, 45 and 42 units are
obtained by the NFL, FFL and BFL algorithms respectively, as shown in Figure 1(a)–(c).

3 Shelf algorithms

In shelf algorithms, rectangles are also packed on horizontal planes (referred to as shelves)
of fixed height as in the case of level algorithms. However, this class of algorithms differs
from the class of level algorithms in that additional space (called free space) is intentionally
left between the top-most edge of the tallest rectangle on a shelf and the position of the
next shelf so as to accommodate (to some degree) potential volatility in the heights of
rectangles yet to be packed. However, in a level algorithm, the position of a level coincides
with the top-most edge of the tallest rectangle on the previous level. The name shelf
algorithm is derived from the situation where books are packed in a stack of bookshelves
[2].

Shelf algorithms were first designed by Baker et al. [2] who modified two existing offline
heuristics, namely the NFDH and FFDH algorithms [10]. The resulting two shelf algo-
rithms are referred to as the next fit shelf (NFSr) and first fit shelf (FFSr) algorithms,
where 0 < r < 1 is a parameter, and these algorithms are described in §3.1. In these
shelf algorithms, the objective is to pack rectangles of similar heights rk+1 < h(Li) ≤ rk

on a single shelf of fixed height rk (for some integer k). The parameter r is a measure of
how much free space is allowed on each shelf to accommodate variations in the heights
of rectangles to come. A small value of r (approximately equal to zero) results in large-
sized shelves — hence allowing for rectangles with large variations in height to be packed
on the same level. On the other hand, a large value of r (approximately equal to 1) allows
rectangles of almost similar heights to be packed on one level due to the small shelf heights
created [25]. For the shelf algorithms applied to our example instance in Table 1, a value
of r = 0.6 was selected for illustrative purposes.

Coffman [12] modified the BFDH algorithm [11] to arrive at the so-called best fit shelf
(BFSr) algorithm, also described in §3.1, which differs from the NFSr and FFSr algorithms
in a manner analogous to the difference between the NFL, FFL and BFL level algorithms.
As Csirik and Woeginger [14] mention, shelf algorithms are based on one dimensional bin
packing procedures: after determining an appropriate shelf on which a rectangle may be
packed, so that it fits height-wise, the problem then becomes the one dimensional bin
packing problem of determining amongst which of the shelves of appropriate height the
rectangle should be packed (during this last stage only one dimension, namely width, is of
interest, because it has been determined that height-wise the rectangle will fit). It is on
this basis that another shelf algorithm, known as the harmonic shelf (HSMr) algorithm is
reviewed in §3.2.
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3.1 The Next Fit Shelf, First Fit Shelf and Best Fit Shelf algorithms

The next fit shelf (NFSr) algorithm [2] with parameter 0 < r < 1 is a natural modification
of the NFDH algorithm [10], the difference being that the rectangles are not sorted in
the NFSr algorithm; they are merely packed in the order given. In this algorithm, a
value of r is initially selected for the entire packing. Before packing each rectangle, the
smallest integer k is computed for which rk+1 < h(Li) ≤ rk; here rk is referred to as the
appropriate height of the shelf to pack rectangle Li. A rectangle is packed on the highest
shelf of appropriate height. If a shelf of appropriate height for rectangle Li does not exist,
a new shelf of appropriate height is created above the top-most shelf and rectangle Li is
packed there, left justified. If a shelf of appropriate height exists, but there is insufficient
space to accommodate the rectangle, this shelf is closed off and a new shelf of the same
(appropriate) height is created above the top-most level.

The first fit shelf (FFSr) algorithm [2] with parameter 0 < r < 1 is a modification of the
FFDH algorithm [10] and it is similar to the NFSr algorithm, except that a rectangle is
placed left justified on the lowest shelf of appropriate height instead of on the highest shelf
of appropriate height.

The best fit shelf (BFSr) algorithm [12] with parameter 0 < r < 1 is a modification of the
best fit decreasing height (BFDH) algorithm [11]. The difference between the FFSr and
BFSr algorithms is that once the parameter r has been selected and different values of
k determined, the latter procedure packs a rectangle on the lowest shelf of appropriate
height with minimum residual horizontal space.

As shown in Figure 1(d), a total packing height of 45.27 units is obtained via all three of
the NFS0.6, FFS0.6 and BFS0.6 algorithms for our example instance in Table 1.

3.2 The Harmonic Shelf algorithm

Csirik and Woeginger [14] combined a one dimensional bin packing algorithm, called the
harmonicM algorithm and proposed by Lee and Lee [19], with the principles of shelf
algorithms. The harmonicM algorithm is used to partition the interval (0,1] non-uniformly
into M intervals I1, . . . , IM , where Ip = (1/(p + 1), 1/p], 1 ≤ p < M and IM = (0, 1/M ].
A reasonable value of M is considered to be in the range 3 ≤ M ≤ 12. This harmonic
partition allows a rectangle to be classified according to the interval into which it fits
width-wise.

The harmonic shelf (HSMr) algorithm does not only aim to pack rectangles of similar
heights on the same shelf; over and above this objective the rectangles should also have
similar widths. Before rectangle Li is packed, two decisions have to be made. The first
decision is to determine the appropriate shelves onto which a rectangle may be packed in
terms of its height by selecting a value for r and computing a value of k for which rk+1 <
h(Li) ≤ rk. The second decision is to determine the interval Ip into which the rectangle
belongs width-wise, by computing the value of p for which 1/(p + 1) < w(Li) < 1/p. Only
rectangles belonging to Ip, with rk as the appropriate height may be packed onto such a
shelf. If no shelf of appropriate height exists or if there is insufficient horizontal space on
all shelves of appropriate height, then a new shelf of appropriate height is created above
the current top-most shelf. In our example instance in Table 1, a total packing height of
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77.60 units is obtained via the HS120.6 algorithm, as depicted in Figure 1(e). Values of
M = 12 and r = 0.6 were used in this example for illustration purposes.

4 Packings observing the tetris constraint

In all the algorithms reviewed thus far, it was assumed that a rectangle may be packed
onto any shelf inside the strip as long as it fits. However, there are applications, such as
packing boxes from the back of a delivery vehicle, where rectangles have to be transferred
through all succeeding levels before being packed (for example, in order to reach the lower
levels of the strip which model the front of the vehicle). This constraint is also found in
the game Tetris where rectangles drop from the top of the strip to reach lower levels and
the player has to avoid being blocked by rectangles already packed in other levels. Three
existing algorithms in the literature, taking this additional constraint into consideration,
are reviewed in this section.

4.1 The AzarY algorithm

This algorithm is from a paper by Azar and Epstein [1]. In the AzarY algorithm, the
rectangle widths are assumed to be in the range (0,1] and the strip has width 1, without
loss of generality. However, there is no restriction on the rectangle heights. The AzarY

algorithm partitions the strip into horizontal levels by means of a real threshold constant
0 < Y < 1

2 . Rectangles of particular heights (2j−1 < h(Li) ≤ 2j) and widths (2−x−1 <
w(Li) ≤ 2−x) are packed on the same level, referred to as an (x, j) level (where j ∈ Z and
x ∈ N).

A rectangle whose width is at least Y is referred to as a buffer. When the next rectangle to
be packed arrives, it is classified either as a buffer or non-buffer, depending on its width. If
it is a buffer, a new level, whose height is equal to the height of the buffer, is created above
the top-most level and the rectangle is packed there, left justified. This means that buffers
are packed on their own within levels. If the rectangle is a non-buffer, it is classified as
an (x, j) rectangle, for some j ∈ Z and some x ∈ N. The first non-buffer rectangle packed
on a level determines the height of the level as 2j and this level becomes an (x, j) level.
If a rectangle fits on an (x, j) level and it can reach such a level without being blocked by
any of the buffers, then it is placed on that level. However, if no such level exists, if the
rectangle does not fit on a particular (x, j) level or if the rectangle is blocked, then a new
level of height 2j is created above the top-most level. For our example instance in Table 1,
a total packing height of 66 units is obtained via the Azar0.25 algorithm, as depicted in
Figure 1(f), where the value of Y = 0.25 was chosen for illustrative purposes.

4.2 The Bi-level Next Fit algorithm

The Bi-level next fit (BiNFL) algorithm [9] is a modification of the NFL algorithm de-
scribed in §2. As the name suggests, the algorithm packs two levels at a time, referred to
as the lower and upper levels. The height of the lower level is determined by the height of
the tallest rectangle packed on it.
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The first rectangle Li to be packed on a bi-level is placed on the lower level, left justified.
If the next rectangle Li+1 to be packed fits on the lower level, it is placed there, right
justified. All other rectangles that follow and fit on the lower level are placed there, right
justified, next to the previous rectangle packed. If there is not enough room for a rectangle
to be packed on the lower level, packing proceeds on the upper level. A horizontal line is
drawn along the top-most edge of the tallest rectangle on the lower level and this becomes
the lower boundary of the upper level.

If, on the upper level, rectangle Li+1 is the first rectangle to be packed (because it failed to
fit on the lower level), it is packed left justified on top of Li since it is the only rectangle on
the lower level. Subsequent rectangles are packed left justified on this level provided there
is sufficient space (see Figure 2(a)). If, on the other hand, Li+2 is the first rectangle to
be packed on the upper level, it is packed above the shorter of Li and Li+1 (because these
are the only two rectangles on the lower level), justified against the same strip boundary
as the shorter of rectangles Li and Li+1; this scenario is depicted in Figures 2(b) and (c).
If there are more than two rectangles on the lower level, the first rectangle packed on the
upper level is packed above the shorter of the first left justified or the first of the right
justified rectangles on the lower level. If a rectangle does not fit on the upper level, a new
bi-level is created above the top-most level and similar steps are carried out as defined for
the lower and upper levels until all rectangles are packed.

A total packing height of 46 units is obtained for our example instance in Table 1, as
shown in Figure 1(g), with the lower and upper levels within each bi-level separated by
dashed lines.

On-line Strip Packing 7

justified rectangles on the lower level. If a rectangle does not fit on the upper level, a new
bi-level is created above the top-most level and similar steps are carried out as defined for
the lower and upper levels until all rectangles are packed.

A total packing height of 62 units is obtained for our example instance in Table 1, as
shown in Figure 2(e), with the lower and upper levels within each bi-level separated by
dashed lines.
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Figure 3: (a)–(c) Examples of patterns resulting from a BiNFL packing. (d) In the CA algorithm

the second rectangle packed on the upper level is right justified provided only one rectangle is

packed on the lower level. Ul and Ll represent the lower boundaries of the upper and lower levels

respectively.

4.3 The Compression algorithm

The compression algorithm (CA) [9] is an extension of the BiNFL algorithm. It exploits
certain patterns (when only one or two rectangles are packed on the lower level) that
result from a BiNFL packing. In the CA algorithm, packing on the lower level proceeds
in a manner similar to a BiNFL packing. However, if rectangle Li (i ≥ 3) is the first
rectangle to be packed on the upper level, it is justified according to the shorter of the first
left justified or first right justified rectangles on the lower level, and it is slid down onto
the lower level provided there is sufficient space (see Figures 3(a) and (b)). If rectangle
Li (i ≥ 3) is the second rectangle to be packed (i.e. if there is one rectangle on each
level, each of them left justified), it is right justified and if there is sufficient room on the
lower level, this rectangle is slid down onto the lower level. Subsequent rectangles that fit
on the lower level may also be shifted next to previously compressed rectangles. Packing
continues on the upper level as in the BiNFL algorithm for rectangles that may not be
slid down. A rectangle that fails to fit on the upper level is placed in a new bi-level that is
created above the top-most level and previous bi-levels are never revisited. In our example
instance in Table 1, a total packing height of 62 units is obtained via the CA algorithm,
as shown in Figure 2(f).

5 Proposed Modifications

A number of modifications to some of the algorithms reviewed in §2–4 are proposed in
this section.

Figure 2: (a)–(c) Examples of patterns resulting from a BiNFL packing. (d) In the CA

algorithm the second rectangle packed on the upper level is right justified provided only one

rectangle is packed on the lower level. Ul and Ll represent the lower boundaries of the upper and

lower levels respectively.

4.3 The Compression algorithm

The compression algorithm (CA) [9] is an extension of the BiNFL algorithm. It exploits
certain patterns (when only one or two rectangles are packed on the lower level) that
result from a BiNFL packing. In the CA algorithm, packing on the lower level proceeds
in a manner similar to a BiNFL packing. However, if rectangle Li (i ≥ 3) is the first
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rectangle to be packed on the upper level, it is justified according to the shorter of the first
left justified or first right justified rectangles on the lower level, and it is slid down onto
the lower level provided there is sufficient space (see Figures 2(b) and (c)) — this process
is called compression. If rectangle Li (i ≥ 3) is the second rectangle to be packed (i.e. if
there is one rectangle on each level, each of them left justified), it is right justified and
if there is sufficient room on the lower level, this rectangle is compressed down onto the
lower level (see Figure 2(d)). Subsequent rectangles that fit on the lower level may also be
shifted next to previously compressed rectangles. Packing continues on the upper level as
in the BiNFL algorithm for rectangles that may not be compressed down. A rectangle that
fails to fit on the upper level is placed in a new bi-level that is created above the top-most
level and previous bi-levels are never revisited. In our example instance in Table 1, a total
packing height of 46 units is obtained via the CA algorithm, as shown in Figure 1(h).

5 Proposed Modifications

A number of modifications to some of the algorithms reviewed in §2–4 are proposed in
this section.

5.1 The Modified Next Fit, First Fit and Best Fit Level algorithms

As the name suggests, the modified next fit level (MNFL) algorithm is a newly proposed
variation on the NFL algorithm described in §2. In the MNFL algorithm, the first rectangle
packed on a level determines the height of that level. If a rectangle is encountered that
does not fit onto the current level, that level is closed off in both these algorithms and a
new current level is created above it. The NFL algorithm is expected to perform poorly if
the rectangles are presented in an order in which they tend to increase in height. However,
if the rectangles are presented in an order in which they tend to decrease in height, then
the algorithm is expected to perform well. The MNFL algorithm differs from the NFL
algorithm in that in the latter procedure, level heights are determined by the tallest
rectangle packed on a level, while in the former procedure, level heights are determined
by the first rectangle packed on the level. For our example instance in Table 1, a total
packing height of 44 units is obtained via the MNFL algorithm, as shown in Figure 5(a).

In the modified first fit level (MFFL) algorithm, the height of each level corresponds to the
height of the first rectangle packed on that level. The MFFL and FFL algorithms differ
in a manner analogous to the difference between the MNFL and NFL algorithms. A total
packing height of 41 units is obtained via the MFFL algorithm for our example instance
in Table 1, as illustrated in Figure 5(b).

The modified best fit level (MBFL) algorithm is similar to the BFL algorithm, except that in
the BFL algorithm the height of a level is determined by the height of the tallest rectangle
packed on the level, while in the MBFL algorithm the height of a level is determined by
the first rectangle packed on the level. A total packing height of 40 units is obtained via
the MBFL algorithm for our example instance in Table 1, as illustrated in Figure 5(c).
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5.2 The Compression Part Fit algorithm

Downey [15] mentions that the CA algorithm (described in §4.3) is far from optimal,
because it only takes a few patterns into consideration (where it may be possible to
compress rectangles from the upper to the lower level). The compression part fit (CPF)
algorithm is proposed to accommodate more patterns occurring within a bi-level. An idea
originally introduced by Burke et al. [7] of using a linear array whose size equals the width
of the strip is employed. Each element of the array is used to store the height of rectangles
packed at that coordinate of the array. However, the drawback of using such an array is
that it requires the dimensions of the rectangles and the strip to be integers. Two versions
of the CPF algorithm are proposed for use when dealing with floating point data. The
first version involves rounding the dimensions (up or down) to the nearest integer, which
may not necessarily represent a true packing, but it maintains the characteristics of the
data. On the other hand, the second version wastes space by rounding up the dimensions
to the nearest integer, thereby creating a feasible packing for the original rectangles.
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Figure 3: Examples of how a linear array is populated when a new bi-level is created. (a) The

upper linear array containing zeros represents a new bi-level with no rectangles packed. The lower

linear array stores the height of the rectangle packed on the lower level from coordinates 0 to 5.

(b) The upper linear array stores the heights of the first and second rectangles packed. The lower

linear array stores height of the third rectangle and the vertical space is indicated by the dashed

arrows at certain coordinates of the linear array. (c) The fifth rectangle has been compressed down

onto the lower level by the CFF algorithm. The horizontal space is indicated by the horizontal

dotted arrow.

Bi-level Stage. Packing on the lower level proceeds exactly as in the BiNFL algorithm,
except that a linear array is used to represent the various heights of rectangles packed on
the lower level only. Before any packing takes place on a bi-level, the linear array contains
only zeros. On the upper level, the CPF algorithm differs from the BiNFL algorithm
in that rectangles are always packed left justified. A vertical space on the lower level is
defined as the space between the lower boundary of the upper level and the upper edge of
rectangles packed on the lower level (or sometimes the lower boundary of the lower level)
at each coordinate of the linear array. Three vertical spaces of heights 2, 4 and 3 units are
indicated by dashed vertical arrows in Figure 3(b) at coordinates 1, 6 and 8 respectively. A
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horizontal space on the lower level, on the other hand, is defined as the space between the
left-hand edge of a rectangle being considered for compression downwards and the nearest
left-hand edge of a rectangle packed on the lower level at a height given in the linear array
at the coordinate corresponding to the left-hand edge of the rectangle. A horizontal space
of 7 units is shown in Figure 3(c) by the horizontal dotted arrows, computed from the
coordinates 2 to 8 at a height of 3 (given in the lower linear array, at coordinate 2 which
corresponds to the left-hand edge of the sixth rectangle).

Compression Stage. For a rectangle to be compressed down onto the lower level, two
conditions must be satisfied:

1. The height of the rectangle must exceed the height of the vertical space. The width
of a rectangle may be covered by a single value (Figure 4(a)) or different values of the
vertical space (Figure 4(b)). If more than one value of the vertical space covers the
entire width of the rectangle, the height of the rectangle must exceed the smallest
value of the vertical spaces.

2. The width of the rectangle must not exceed the width of the horizontal space.

Provided that the two conditions above are satisfied, the rectangle in question is com-
pressed down so that its bottom edge rests on the top edge of a rectangle on the lower
level. The algorithm is expected to perform better if the tallest rectangle on the upper level
may be compressed onto the lower level. A total packing height of 35 units is obtained
when the CPF algorithm is applied to our example instance in Table 1, as shown in Figure
6(a).
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(a) (b)

Figure 4: Example of how the width of a rectangle is covered by: (a) one value of vertical

space, or (b) more than one value of vertical space.

5.3 The Compression Full Fit algorithm

The steps of the compression full fit (CFF) algorithm and the CPF algorithm are similar
in all respects, except for condition 1 of the compression stage. In the CFF algorithm,
a rectangle is compressed down onto the lower level provided its height is less than or
equal to the vertical space covering the entire width of the rectangle. The advantage of
doing this is that the residual vertical space (the vertical space remaining after a rectangle
is compressed down) may be considered again when packing the next rectangle. Before
rectangle 5 was compressed down in Figure 3(c), there were vertical and horizontal spaces



A survey and comparison of heuristics for the 2D oriented on-line strip packing problem 167

45

25

40

20

30

15

50

10

35

5

0

1

10

9

8
7

65

4

3

2

45

25

40

20

30

15

50

10

35

5

0

1

9

10
8

5

4

7

6

3

2

45

25

40

20

30

15

50

10

35

5

0

1

10

9

65

4

8

7

3

2

(a) MNFL (b) MFFL (c) MBFL

Figure 5: Packings produced by the modified algorithms described in §5.1 for the example

instance of the strip packing problem in Table 1. Rectangle Li is denoted by i in the figure, for all

i ∈ {1, . . . , 10}.

of 2 and 7 units respectively at coordinate 2. After rectangle 5 was compressed down onto
the lower level, a vertical space of 1 unit resulted. If rectangle 6 had a height of 1 unit,
then it would be compressed down onto the lower level. The idea in the CFF algorithm is
to increase the probability of packing more rectangles on the upper level by utilising the
space remaining after compression of a rectangle onto the lower level. Once a rectangle is
compressed onto the lower level, the space it was supposed to occupy on the upper level
may be used to pack other rectangles. The algorithm is expected to perform better if the
tallest rectangle on the upper level may be compressed onto the lower level and if more
rectangles fit onto the upper level. The latter implies an increased probability of creating
fewer levels, hence possibly leading to a decrease in the overall strip height. When the
CFF algorithm is applied to our example instance in Table 1, a total packing height of 46
units is obtained, as illustrated in Figure 6(b).

5.4 The Compression Combo algorithm

The compression combo (CC) algorithm is a combination of the first conditions of the
compression stages of the CPF and CFF algorithms. In the CC algorithm, any rectangle
may be compressed down onto the lower level regardless of whether it fits fully or partially
onto the lower level, as long as the second condition is satisfied, namely that the width of
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the rectangle to be compressed down is at most the width of the horizontal space. When
the CC algorithm is applied to our example instance in Table 1, a total packing height of
35 units is again obtained, as illustrated in Figure 6(a).

6 Two New Shelf Algorithms

In this section two new shelf algorithms are suggested. The algorithms highlight two
different methods of creating free space in between shelves, based on the packing history,
so as to cater for the volatility in heights of rectangles still to be packed.

6.1 The Shelf Deviation algorithm

In the newly proposed shelf deviation (SDev) algorithm the notion of a shelf type refers to
a collection of shelves of equal height and the objective is to increase these fixed heights
as more types are created. A type1 shelf only accommodates rectangles of height 0 <
h(Li) ≤ h(L1) where L1 is the first rectangle to be packed (i.e. the height of the first
rectangle determines the height of the first shelf type). A rectangle whose height fits
within this range is referred to as a type1 rectangle. The height of a subsequent shelf of
typej (j ≥ 2) equals the height of the first rectangle packed on the shelf together with a
certain proportion, referred to as the shelf height increase proportion. This proportion is
computed as the standard deviation (stdev) of the rectangle heights already packed on all
shelves, i.e. h(typej) = h(Li+1) + stdev(h(L1), . . . , h(Li+1)). In general, typej shelves can
accommodate rectangles of height h(typej−1) < h(Li) ≤ h(typej), where j ≥ 2.

Rectangles are classified according to the shelf type to which they belong and are packed
onto the lowest shelf of that type. New shelf types are created above the top-most shelf
each time the next rectangle has a height exceeding the height of all existing shelf types.
It is not necessary for two consecutive shelves to be of the same type — the shelf types
may be interspersed, as long as rectangles are placed onto appropriate shelf types. If there
is insufficient horizontal space to accommodate a rectangle, a new shelf of the appropriate
type is created above the top-most shelf for that rectangle. In our example instance in
Table 1, a total strip height of 90.80 units is obtained via the SDev algorithm, as shown in
Figure 6(c). A pseudocode listing of the steps of this algorithm is given in the appendix.

6.2 The Shelf Difference algorithm

The shelf difference (SDiff) algorithm differs from the SDev algorithm only in the way
the shelf height increase proportion is computed. In the SDiff algorithm, a type1 shelf
is still determined by the height of the first rectangle packed. For a subsequent shelf
of type typej (j ≥ 2), instead of computing the standard deviation, the shelf height
increase is taken as the difference between the height of the rectangle to be packed and
the previous shelf height added to the height of the previous shelf type, i.e. h(typej) =
(h(Li+1)−h(typej−1)) + h(Li+1). A total packing height of 86 units is obtained when the
SDiff algorithm is applied to our example instance in Table 1, as shown in Figure 6(d). A
pseudocode listing of the steps of this algorithm is also given in the appendix.
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Figure 6: Packings produced by the algorithms described in §5.2 –6.2 for the example instance

of the strip packing problem in Table 1. Rectangle Li is denoted by i in the figure, for all i ∈
{1, . . . , 10}.
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7 Comparison of algorithmic results

The efficiencies of and solution qualities obtained by the algorithms presented in §2–6 were
compared by applying them to the 542 benchmark instances of Beasley [4, 5], Burke et
al. [7], Christofides and Whitlock [8], Hopper and Turton [16, 17] and Mumford-Valenzuela
[21]. For a full description on how these benchmark data sets were generated, the reader is
referred to [22]. Each algorithm’s performance was measured by means of the mean packing
height obtained as well as by the mean execution time, computed over all benchmark data
sets. Statistical tools used in the comparison of each algorithm’s performance include the
student’s t-test, ANalyses Of VAriance (ANOVA) and the chi-squared test. All these tests
were carried out at a 5% level of significance. The t-test and ANOVA were used to compare
the mean packing heights obtained by the algorithms over the 542 instances, while the
chi-squared test was used to compare the frequencies with which the various algorithms
obtained the smallest packing height and to determine whether, statistically, there were
any significant differences between these frequencies. Where the results from the ANOVA
indicated significant differences, the method of Least Significance Difference (LSD) was
employed to determine between which algorithms these differences arose.

While testing the algorithms, it was observed that in most of the 542 data sets, the initial
rectangles have larger heights than the rectangles towards the ends of the packing lists.
Hence each algorithm was tested three times on each data set, by changing the order in
which rectangles enter the system from the data set list—either in the normal or forward
order, in the reverse order and in a random order.

7.1 Level algorithms

The level algorithms from the literature for online packing problems described in §2 were
compared with the suggested modifications in §5. The results shown in the first section
of Figure 7 indicate that the mean packing height obtained in the forward traversal order
of the data sets is smaller than in the reverse order. This is because in the forward order,
packing typically begins with rectangles of greater height and for those algorithms that
allow revisiting of existing levels, the smaller rectangles may be inserted on any available
level with sufficient space—thus decreasing the probability of creating new levels. An
ANOVA was carried out separately for each order and in all instances the results revealed
that there are significant differences between the mean packing heights obtained. In all
three traversal orders, the newly suggested MFFL algorithm obtained the smallest mean
packing height, although the LSD indicated that there were no significant differences be-
tween the mean packing heights obtained by the MFFL, BFL, FFL and MBFL algorithms
(indicated “5” by entries in Table 2). There were significant differences between the mean
packing heights obtained by algorithms that do not revisit existing levels (NFL, MNFL,
BiNFL) and those allowing existing levels to be revisited (FFL, BFL, MFFL, MBFL), as
expected.

In terms of the algorithmic frequencies of obtaining the smallest packing height (which
may be seen in the first section of Figure 9) the results of the chi-squared test revealed
that there were significant differences between those frequencies achieved by the various
algorithms. The MFFL algorithm has the largest frequency in all traversal orders—hence
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this is statistically the best algorithm within this class of level algorithms, at a 5% level
of significance.

Further tests were also carried out to determine whether the data set traversal order
plays a significant role in each algorithm’s performance measured. The results shown
in Table 4 indicate that, in terms of the mean packing height obtained, order does not
play a significant role in the NFL and BiNFL algorithms. However, when it comes to a
frequency analysis, it is only for the MNFL algorithm that traversal order is unimportant
(see Table 4).

The class of FFL, MFFL, BFL and MBFL algorithms considered to have achieved better
performances in terms of smallest mean packing height obtained, have correspondingly
longer execution times than the poorer performing class of NFL, MNFL and BiNFL algo-
rithms (see Table 4). This is an expected result, because in the former class of algorithms
the strip has to be searched from the bottom upwards for a level with sufficient space
and this is time consuming — particularly for a large number of levels. Ideally the best
performing algorithm should achieve the smallest packing height in the quickest time.
However, the results indicate that a trade-off exists between algorithms that yield better
solutions, but which take longer to execute, and algorithms yielding solutions of lesser
quality, but which exhibit faster execution times.

Another investigation was carried out in terms of the aspect ratios of the 1 626 data sets (a
combination of all three traversal orders for all 542 benchmark data sets). From the 1 626
instances, only instances where an algorithm obtained the smallest packing height were
selected and the standard deviation (stdevAR) and mean (meanAR) of the aspect ratios of
the rectangles in these instances were computed. The fraction stdevAR/meanAR, known
as the coefficient of variation (CV), was used to reflect the variation of rectangle aspect
ratios relative to the mean. The numbers of data sets for which each algorithm obtained
the smallest height associated with values of the CV are shown in Figure 8. If, for instance,
a value of 3 is selected for the CV, it may be seen in the figure that the BFL, MBFL, FFL
and MFFL algorithms were all able to obtain the smallest packing height, on average. Of
these algorithms, the MFFL algorithm obtained the smallest packing height for the largest
number of data sets (825).

An interesting question is the following: Given a data set with a known CV value, which
level algorithm should be recommended to give the best solution, on expectation? To
answer this question, the CV values for test instances where each algorithm obtained the
smallest height were analysed. The objective was to determine a threshold CV value
beyond which significant differences occur between frequencies in obtaining the smallest
packing height by each level algorithm and below which any of the level algorithms may be
used. This was achieved by starting with the smallest value and iteratively determining the
frequency with which each level algorithm obtained the smallest packing height for that
particular CV value. At each iteration, before the CV value was increased, a chi-squared
test was performed to determine whether there were any significant differences between
the frequencies obtained by each level algorithm. As the value of CV was increased, a
point was reached where a slight increment results in significant differences between the
frequencies obtained by each level algorithm. We call such a point the threshold CV value,
and this value was found to be 0.438 in the case of level algorithms. This means for data
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Figure 8: Aspect ratio analysis for level algorithms: a – MNFL, b – NFL, c – BiNFL, d –

MBFL, e – BFL, f – FFL and g – MFFL.

sets with CV values below the threshold, any of the algorithms may be used, but for values
greater than the threshold, the MFFL algorithm is recommended.

7.2 Shelf algorithms

When comparing the shelf algorithms, the algorithms discussed in §3 pose a problem,
because they depend on a parameter 0 < r < 1. Over and above this, the HSMr algorithms
also depend on the value of a parameter 3 ≤ M ≤ 12. Hence each of the algorithms
was implemented with the representative parameter values r = 0.2, 0.5, 0.8 and M =
4, 8, 12 resulting in six classes of the algorithms (NFSr, FFSr, BFSr, HS4r , HS8r , HS12r).
An ANOVA was performed on each of these six classes for the three different traversal
orders and the results are shown in Table 3. In the NFSr class, no significant differences
were observed between the NFS0.5 and NFS0.8 algorithms. However, the NFS0.5 algorithm
was selected for further comparisons since it achieved a smaller mean packing height over
all benchmark sets. For algorithmic instances whose mean heights showed no significant
difference, a selection of algorithms to be used for the purposes of further comparison was
simply based on the algorithmic instance achieving a smaller mean packing height. Hence
the following algorithms were selected in all traversal orders: FFS0.5, BFS0.5, HS40.8 , HS80.5

and HS120.5 .

The selected shelf algorithms and the two new shelf algorithms were compared in terms
of the mean packing height obtained and the results are shown in the second section of
Figure 7. The results indicate that, in terms of the mean packing height obtained, the
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NFS0.5, FFS0.5 and BFS0.5 algorithms achieved the best performance, followed by the new
SDev and SDiff algorithms.

Considering the algorithms individually and comparing the mean packing heights obtained
per traversal order, results from the ANOVA indicated that there were no significant
differences, except with the SDev and SDiff algorithms. The results shown in Table 4
indicate that the two algorithms perform better in the reverse order. This was an expected
result, because the SDev and SDiff algorithms rely on the first rectangle packed and ideally
this rectangle must have the smallest height possible. As mentioned, the majority of
the benchmark data sets in reverse order start with rectangles of relatively small height,
hence leading to small increments of each shelf height with an overall smaller total packing
height. The mean packing heights obtained by the NFS0.5, FFS0.5 and BFS0.5 algorithms
were not expected to be similar, because a rectangle is classified according to its height,
but depending on the widths of the rectangles that are packed first, it may sometimes
be necessary to create an additional shelf of appropriate height due to insufficient space
on existing shelves of appropriate height. The HS algorithmic instances, on other hand,
were expected to yield similar mean packing heights regardless of the order, because the
algorithm takes both height and width of the rectangles into consideration before packing
on a level.

The results of the chi-squared test indicated that only the HS algorithmic instances display
no significant difference with respect to the frequency with which they achieve the smallest
packing heights, as illustrated in Table 4 (columns 14–16). The shelf algorithms with
parameter r achieve the largest frequency, followed by the SDev and SDiff algorithms
(see Figure 9). Based on the results in Table 4 the SDev and SDiff algorithms require
shorter execution times than the known shelf algorithms from the literature. A threshold
value of 0.456 was computed for the class of shelf algorithms. The FFS0.5 algorithm
is recommended for use when dealing with data sets with a CV value larger than this
threshold.

7.3 Special case algorithms obeying the tetris constraint

Because the AzarY algorithm depends on the threshold constant 0 < Y < 1/2, three rep-
resentative values Y = 0.2, 0.25, 0.3 were selected in order to determine only one value that
may be used for further comparisons with other algorithms obeying the tetris constraint.
An ANOVA was carried out and the results revealed that there were no significant dif-
ferences between the mean packing heights obtained by these three algorithmic instances.
The Azar0.25 algorithm was selected, because upon carrying out a chi-squared test, sig-
nificant differences were found between the frequencies in obtaining the smallest packing
heights, showing that the Azar0.25 algorithm achieved the largest frequency (297).

The results shown in the third section of Figure 7 indicate that the newly proposed CC
algorithm obtained the smallest mean packing height in the class of algorithms obeying
the tetris constraint. An ANOVA was carried out separately for each algorithm to decide
whether the traversal order in which rectangles enter the system affects the performance of
an algorithm. The results shown in Table 4 indicate that there are no significant differences
between mean packing heights obtained per traversal order by each algorithm.
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Figure 10: Aspect ratio analysis for shelf algorithms: a – HS80.5 , b – HS120.5 , c – HS40.8 , d –

SDiff, e – SDev, f – NFS0.5, g – FFS0.5 and h – BFS0.5.

Comparing the frequencies of obtaining the smallest packing height separately for each
algorithm, the results of the chi-squared test (see Table 4) showed that only the CPF
algorithm is affected by the order in which rectangles enter the system, achieving the
largest frequency in the reverse traversal order.

When comparing all the algorithms obeying the tetris constraint, the results of the ANOVA
indicate that there are significant differences in terms of their mean packing heights ob-
tained by the various algorithms over all 542 test instances. The results from the LSD
(see Table 2) suggest that the newly proposed CC and CFF algorithms are the best per-
forming algorithms with no distinguishable difference between the mean packing heights
obtained. However, in terms of the frequency of obtaining the smallest packing height, the
two algorithms are distinguishable with the CC algorithm achieving the largest frequency,
as may be seen in the results of the chi-squared test.

A CV threshold value of 0.443 was computed, implying that for data sets with CV values
smaller than the threshold, any of the special case algorithms may be used. However, for
CV values larger than the threshold, the CC algorithm is recommended.

8 Final Remarks

We have investigated a number of on-line algorithms from the literature and classified
them into the three classes of level, shelf and special case algorithms. For each class, we
were able to find a threshold value for the coefficient of variation (CV) such that, given
a data set with CV value above this threshold, certain heuristics are recommended above
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Figure 11: Aspect ratio analysis for special case algorithms: a – BiNFL, b – NFL,

c – CCF, d – CA, e – CPF and f – CC.

others. In particular, for level (resp. shelf) algorithms, data sets with CV values beyond
0.438 (resp. 0.456), the MFFL (resp. FFS0.5) algorithm is recommended. For special case
algorithms obeying the Tetris constraint, the CC algorithm is recommended for CV values
beyond a threshold value of 0.443.

Two new shelf algorithms (SDev and SDiff) were introduced with an entirely different
way of generating additional space within shelves. Instead of using a parameter value (as
in some of the classical shelf algorithms from the literature), the new algorithms use the
history of the rectangles packed to determine how much free space to create. In the SDev
algorithm, the standard deviation of the heights of the rectangles already packed is used
while in the SDiff algorithm, the difference in height between the previous shelf and the
rectangle to be packed is used. The advantage of the new algorithms is that they do not
rely on the selection of any parameter value which, if badly chosen, may lead to poor
performance of the algorithm. The new algorithms achieve a better performance than the
HSMr algorithm and can even perform better than the NFSr, FFSr and BFSr algorithms
for certain values of the parameter r.

Three modifications (CPF, CFF and CC algorithms) to the CA algorithm [9] have also
been proposed, which take more patterns into consideration. When tested on benchmark
data sets, the CC algorithm obtained the smallest packing height with the highest fre-
quency.

Finally, it is worth mentioning that in terms of execution time, all algorithms were able
to provide a solution to any benchmark instance within 1 second on a 2.00 GHz processor
with 224 MB of RAM.
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Appendix

Algorithm 1: Shelf Deviation and Shelf Difference algorithms
Input: Dimensions of the rectangles 〈w(Li), h(Li)〉 and the strip width W .
Output: The height H of the packing obtained in the strip.

1: h(type0,1)← 0, h(type1,1)← h(L1), H ← h(type1,1)
2: w(type1,1)←W − w(L1)
3: i← 1, j ← 1, k ← 1, NumTypes← 1, NumShelfType1 ← 1
4: while there is a rectangle to be packed do
5: i← i + 1 (going to the next rectangle)
6: while j ≤ NumTypes Or rectangle is not packed do
7: k ← 1
8: if h(typej−1,k) < h(Li) ≥ h(typej,k) then
9: while k ≤ NumTypesj do

10: if w(typej,k) ≥ w(Li) then
11: pack rectangle
12: else {w(typej,k) < w(Li)}
13: k ← k + 1 (move on to the next shelf of the same type)
14: end if
15: end while
16: if k > NumShelfTypej then
17: NumShelfTypej ← NumShelfTypej +1 (increase the number of shelves

of this particular type)
18: w(typej,k) = W − w(Li)
19: H ← H + h(typej,k)
20: end if
21: else {h(typej−1,k) ≥ h(Li) or h(Li) < h(typej,k)}
22: j ← j + 1 (move on to the next type)
23: end if
24: end while
25: if j > NumTypes then
26: create a new shelf type
27: NumTypes← NumTypes + 1, k ← 1
28: proportion← stdev(h(L1), . . . , h(Li)) SDev algorithm
29: proportion← (h(Li)− h(typej−1,k)) SDiff algorithm
30: h(typej,k)← proportion + h(Li)
31: H ← H + h(typej,k)
32: end if
33: end while
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