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Abstract

A technique known as calibration is often used when a given option pricing model
is fitted to observed financial data. This entails choosing the parameters of the model
so as to minimise some discrepancy measure between the observed option prices and
the prices calculated under the model in question. This procedure does not take
the historical values of the underlying asset into account. In this paper, the density
function of the log-returns obtained using the calibration procedure is compared to a
density estimate of the observed historical log-returns. Three models within the class
of geometric Lévy process models are fitted to observed data; the Black-Scholes model
as well as the geometric normal inverse Gaussian and Meixner process models. The
numerical results obtained show a surprisingly large discrepancy between the resulting
densities when using the latter two models. An adaptation of the calibration method-
ology is also proposed based on both option price data and the observed historical
log-returns of the underlying asset. The implementation of this methodology limits
the discrepancy between the densities in question.
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1 Introduction

It is well known that the arbitrage free price of an option can be calculated as the dis-
counted value of the expected payoff of the option in question. However, this expectation
is not taken with respect to the probability measure underlying the market (referred to as
the objective probability measure), rather this expectation is calculated with respect to
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some other probability measure (referred to as the risk neutral measure). This paper nu-
merically investigates the discrepancy between these measures. Specifically, by comparing
the densities associated with the two probability measures it is demonstrated that there
is often a substantial discrepancy between these densities.

The efficient market hypothesis states that all of the information relevant to the prices of
options is contained in the observed market price of these options; see, for example, [9].
This serves as an explanation as to why there is a difference between the objective and
risk neutral measures. The former can be estimated from historical stock price data, while
the latter is influenced by information which only become available after the historical
stock prices have been realised. However, there is a close relationship between these two
measures. If the difference between the measures is substantial, then the option prices
resulting from the model considered are calculated under the assumption that the future
behaviour of the stock price will be considerably different from its historical behaviour.

In practice, option pricing models are often fitted using data from European options. The
resulting model is then used in order to calculate the prices of exotic options. Large
differences between the estimated density of the observed log-returns and the density used
for the calculation of option pricing seems especially disconcerting in this case.

Ross, in [14], formulates the recovery theorem. The techniques developed in the mentioned
paper are concerned with the link between the density function used for the pricing of
financial derivatives and the density of the log-returns of the underlying asset. These
techniques have applications in quantifying the level of risk aversion present in a given
market. Note that the approach used in the current paper is quite different from the
approach used by Ross. In the current paper, the difference between the two densities
mentioned is compared. The aim of this paper is to demonstrate the substantial differences
between the density of the log-returns of the underlying asset and the risk neutral density.

When fitting a given financial model to observed option prices, a method known as cali-
bration is often employed. Calibrating a model to a set of observed option prices entails
choosing the parameters of the model so that the option prices calculated using the model
correspond as closely as possible to the observed option prices. This procedure will be
made precise below.

In this paper, three geometric Lévy process models are considered; the first is the cele-
brated Black-Scholes model, while the remaining two are the geometric N◦IG and Meixner
models respectively. The Black-Scholes model, which is based on the geometric Brownian
motion, contains two parameters, while the remaining two models contain four. When
calibration is used in order to fit these models to observed option prices, it is observed
that the risk neutral measure closely resembles the objective measure in the case of the
Black-Scholes model. However, it will be shown that, when one of the other models is
used, the density of the obtained risk neutral measure can be markedly more leptokurtic
than is the case for the density associated with the objective probability measure.

It is common practice to report the parameters of the models used in terms based on
annual log-returns. However, estimating the parameters of a financial model based on
annual data is not feasible for two reasons. Firstly, in this case, there is often simply not
enough historical data available in order to estimate parameters with acceptably small
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standard errors. Secondly, even if a sufficient amount of historical data were available, the
prices of options should be calculated under current market conditions. This means that
returns observed several years before are outdated and should not be taken into account
when fitting the model. As a result, the models used in practice are often fitted using
daily data and the parameters reported are shown in annual terms. This mismatch in the
time horisons considered can obscure some of the differences between the objective and
risk neutral measures; this is demonstrated using a numerical example in the paper.

The remainder of the paper is structured as follows. In Section 2 a brief overview of option
pricing is outlined. In Section 2.1 the theory underlying arbitrage free option pricing, with
an emphasis on the theoretical relationship between the objective probability measure and
the risk neutral measure, is provided. Section 2.2 shows how a risk neutral measure can
be obtained from an objective measure by using a change of measure technique called the
Esscher transform. This technique requires that the objective measure be estimated using
historical price data of the underlying asset. The calculation of option prices is discussed
in Section 2.3. In Section 2.4, a calibration procedure often used in order to obtain a
risk neutral measure is discussed. This risk neutral measure is obtained by only taking
observed option price data into account.

In Section 3, the three models used in this paper are discussed. Each of these models
are from the class of geometric Lévy models. In Section 3.1 the Black-Scholes model is
discussed. The main advantage of this model is the ease with which option prices can
be calculated. However, the inability of this simplistic model to accurately represent the
leptokurtic and skew nature of the distributions of observed financial log-returns is well
documented; see, for example, [7]. As a result, attention is turned to the more flexible
geometric N ◦ IG (Section 3.2) and Meixner (Section 3.3) models.

In Section 4 the numerical results pertaining to the pricing of options in observed financial
markets are presented. For each of the models under consideration, various risk neutral
measures obtained in different ways are considered. The presented analyses focus on the
accuracy with which the various risk neutral measures are able to replicate the observed
option prices, as well as the discrepancy between the density associated with the risk
neutral measure and the density of the estimated objective measure. Section 5 presents
the main conclusions of this empirical study.

2 Option pricing in theory and practice

To a large extent, there exists a disconnect between the option pricing theory developed in
an abstract mathematical framework and the practical implementation of these theoretical
concepts. Below, in Section 2.1, the mathematical theory underlying the calculation of
arbitrage free option prices are considered, including the estimation of the distribution of
the log-returns of the stock price (note the integral part that the historical stock price data
plays in this process). This distribution is then altered slightly, so as to ensure that the
expected growth of the stock price equals that of a risk free bond. The Esscher transform
is a popular technique used in order to alter the distribution in this way; this technique is
discussed in Section 2.2.
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Given the probability measure obtained by estimating the objective probability measure
underlying the log-returns of the stock price process, the application of the Esscher trans-
form can be used in order to construct a probability measure, for which the price of a
given option can be calculated as the discounted expected value of the payoff function of
the option. This probability measure is referred to as the risk neutral measure. Section 2.3
discusses the calculation of option prices, given a risk neutral measure, using fast Fourier
transforms.

Section 2.4 contains the details of a calibration procedure that is often employed in prac-
tice. This procedure ignores the pricing methodology prescribed by the abstract mathe-
matical framework mentioned. Instead, the parameters of the model used are chosen so
as to minimise some distance measure between the calculated and observed option prices.
This results in a second probability measure that can be used in order to calculate option
prices. In this case, the historical stock price data is not taken into account when fitting
the model.

2.1 Arbitrage free option pricing

We assume a filtered probability space (Ω,F ,Ft,P), where Ft is a filtration satisfying the
usual conditions; i.e. Ft is right-continuous and non-decreasing. The probability measure
P determines the distributional properties of the log-returns of the stock price process
(and therefore the properties of the stock price process itself). This measure is known as
the objective probability measure.

The price St of a stock (or index) at time t is often modelled as a geometric process of the
form

St = S0 exp (Lt) , (1)

where Lt denotes the log-return process of the stock at time t. Throughout this paper, all
of the models used are parameterised daily. This means that St denotes the stock price
at the end of the tth business day.

The price of a European call option with strike price K and time to maturity T can be
calculated as

π(K,T,Q) = e−rTEQ [max (ST −K, 0)] , (2)

where Q is locally equivalent to P and such that e−rtSt is a Q-martingale; for an expla-
nation, see Chapter 6 of [4]. A measure, satisfying the two mentioned conditions is called
a locally equivalent martingale measure (LEMM). It is possible that there exist multiple
LEMMs. If Q is used in the calculation of option prices it is specifically referred to as the
risk neutral measure.

Using (2) to calculate option prices entails changing probability measures from P to Q.
When changing measure from P to Q the probability of uncertain events changes. As
a result, the processes governed by P and Q have different statistical properties. The
required change of measure can be affected in a number of ways, one of which is known
as the Esscher transform.
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2.2 Esscher transform

Let ft be the density of Lt under probability measure P. For a real number λ such that∫ ∞
−∞

eλxft (x) dx <∞,

define a new density to be

fλt (x) =
eλxft (x)∫∞

−∞ e
λxft(x)dx

. (3)

Denote by Pλ the probability measure under which the density of Lt is fλt .

A family of probability measures are obtained by varying the value of λ in (3). The
application of the Esscher transform entails choosing the value of λ so that e−rtSt forms a
Pλ-martingale (note that Pλ is locally equivalent to P by construction). For an explanation
of the Esscher transform, see Chapter 6 of [15]. More technical details surrounding the
Esscher transform when used in conjunction with Lèvy processes can be found in Chapter
9 of [8]. Let φt denote the characteristic function of Lt under P. The discounted price
process e−rtSt forms a Pλ-martingale if, and only if,

erφ1 (−iλ) = φ1 (−i (λ+ 1)) ; (4)

see [15]. Typically, (4) has a unique solution λ = λ∗, which means Pλ∗ is a LEMM, fit to
be used as a risk neutral measure.

Several of the numerical results obtained in Section 4 are calculated using the Esscher
transform. The application of the Esscher transform can be used to change probability
measure from P to Q = Pλ∗ . For each of the option pricing models considered in Section 3,
the application of the Esscher transform effects the parameters of the distribution of the
increments of Lt. For each of these models, the application of the Esscher transform entails
setting one of the parameters to a prespecified function of the remaining parameters. This
effectively reduces the number of free parameters in each of the models by one. For a more
detailed discussion of the Esscher transform, the interested reader is referred to [11].

2.3 Option pricing using fast Fourier transforms

The price of a European call option can be calculated directly using (2) when the distri-
bution of Lt is known (which is the case for each of the models considered). This can
be achieved using numerical integration. However, for certain parameter sets, numerical
difficulties complicate the calculation of the densities of the N ◦ IG and Meixner distribu-
tions; for examples as well as a proposed solution using the Fourier inversion formula, see
Visagie (2018).

Carr et al. [6] show that fast Fourier transforms can be used to calculate option prices.
A numerically efficient simplification to the method developed by Carr and Madan is
presented in [1]. The application of this method is demonstrated below.
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In [1], Attari shows that the price of a European call option can be calculated using

π(K,T,Q) = S0 − e−rTK
(

1

2
+

1

π

∫ ∞
0

(
RT (ω) + IT (ω)

ω

)
cos (ωl) +

(
IT (ω)− RT (ω)

ω

)
sin (ωl)

1 + ω2
dω

 , (5)

where RT (ω) and IT (ω) denote the real and imaginary parts of φT (ω) respectively and

l = log
(
Ke−rT

S0

)
. The formula given in (5) is used throughout the paper in order to obtain

the numerical results presented.

2.4 Calibration

Calibrating a financial model to observed option prices entails minimising some dis-
tance measure between these prices and the option prices calculated under the risk neu-
tral measure Q. Consider a market with n options and denote by π(Kj , Tj ,Q)O,j and
π(Kj , Tj ,Q)M,j the observed price and the price under the model respectively of the jth

option. The root mean square error (RMSE) is defined as

RMSE(Q) =

√√√√ 1

n

n∑
j=1

(π(Kj , Tj ,Q)O,j − π(Kj , Tj ,Q)M,j)2,

where the argument Q is included in order to emphasize the dependence on the risk
neutral measure. Throughout this paper, RMSE is chosen as the distance measure to be
minimised.

Mathematically, the calibration procedure used entails choosing the risk neutral measure
Q?, where

Q? = arg min
Q∈Q

RMSE (Q) , (6)

with Q the set of possible risk neutral measures. In order to guarantee the absence of
arbitrage in a given market, Q must be a LEMM. Therefore, in order to guarantee that
the market is arbitrage free, Q should be defined as the class of LEMMs. However, Fouque
et al. [10] points out that when a calibration procedure is employed in practice, the history
of St is often completely ignored (or in some cases the analyst might not be able to obtain
historical data on St). This means that financial practitioners often do not estimate P and
that the requirement that the risk neutral measure be locally equivalent to the objective
measure is discarded. One possible reason for the implementation of this approach is
that, in some instances, the calibration procedure is substantially simplified when the
local equivalence condition is ignored. This methodology is not restricted to practitioners;
often when a new model is proposed in the literature the model is calibrated to option
prices while ignoring the price history of the stock; see, for example, [16].

The calibration procedure used below ignores the local equivalence requirement. As a
result, Q is the class of measures such that e−rtSt forms a Q-martingale for all Q ∈ Q. We
refer to this type of calibration as full calibration. Section 4 also includes results obtained
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when using what is referred to as restricted calibration. This procedure minimises the
RMSE subject to the constraint that the discrepancy between the objective and risk
neutral measures not exceed a specified magnitude. As a result, restricted calibration
minimises the RMSE while taking the properties of the objective probability measure into
account.

3 Option pricing models

In this paper, the models used form part of the class of geometric Lévy models; these
models are discussed below. The dynamics of the stock price process are defined in (1).
We use the model obtained when the log-return process Lt follows the N ◦IG and Meixner
processes. The Black-Scholes model under which Lt is assumed to be a Brownian motion
is also considered. Note that, since Brownian motion is a Lévy process, the Black-Scholes
model also falls within the class of geometric Lévy process models.

The discussions of the N◦IG and Meixner distributions in Sections 3.2 and 3.3 respectively
are partially based on [15].

3.1 The Black-Scholes option pricing model

Certainly the most famous option pricing model is the Black-Scholes model. Black and
Scholes used differential equations and a replicating portfolio argument to find an option
pricing formula; see [5]. In the framework of the Black-Scholes model, Lt is assumed to
be a Brownian motion, with drift µ ∈ R and volatility parameter σ > 0, under probability
measure P.

In the Black-Scholes market there exists a unique LEMM. Changing measure from P to
the LEMM in this model entails setting the drift of the Brownian motion to

µ = r − σ2

2
.

As a result, the arbitrage free price of each option in this market is uniquely determined
by the value of σ.

3.2 The geometric N ◦ IG model

The N ◦ IG distribution was introduced by Barndorff-Nielsen; see [2] and [3]. A random
variable X : Ω→ R is said to follow a N ◦ IG distribution with parameter set (α, β, µ, δ)
if it has density

f (x; (α, β, µ, δ)) =
αδ

π
exp

(
δ
√
α2 − β2 + β(x− µ)

) K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

,

where α > 0, |β| < α, µ ∈ R, δ > 0 and K1 denotes the modified Bessel function of
the third kind with index 1; see [15]. A random variable following this distribution is
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denoted by X ∼ N ◦ IG (α, β, µ, δ). The characteristic function of the N ◦ IG (α, β, µ, δ)
distribution is

φ(u; (α, β, µ, δ)) = exp
(
iµu− δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
.

Let Xj , j = 1, 2, ..., n, be n independent and identically distributed N ◦ IG (α, β, µ, δ)
random variables, then

n∑
j=1

Xj ∼ N ◦ IG(α, β, nµ, nδ). (7)

A comment on the convolution of individual log-returns will be made in Section 4.

If the log-return process, Lt, is a N ◦ IG process with parameter set (α, β, µ, δ), then Lt is
a Lévy process such that the random variable L1 follows a N ◦ IG (α, β, µ, δ) distribution.
The increments of a N ◦ IG (α, β, µ, δ) process has the distribution

Lt+s − Lt ∼ N ◦ IG(α, β, µs, δs),

for all s > 0.

Consider the case where Lt follows a N ◦ IG (α, β, µ, δ) process under P. If the Es-
scher transform is used in order to find a LEMM (denoted by Q), then Lt follows a
N ◦ IG (α, β + γ∗, µ, δ) process, where γ = γ∗ is the solution to

r = µ+ δ

(√
α2 − (β + γ)2 −

√
α2 − (β + γ + 1)2

)
.

This was obtained by applying (4).

In this paper, the standardised central sample moments of the historical log-returns will be
compared to the standardised central moments of Lt. Denote by mj the jth standardised
central moments of Lt under the risk neutral measure used. The expected value, variance,
skewness and kurtosis of Lt are given by

m1 (α, β, µ, δ) = µt+
δtβ√
α2 − β2

,

m2 (α, β, µ, δ) =
α2δt√

(α2 − β2)3
,

m3 (α, β, µ, δ) =
3β

α
√
δt(α2 − β2)1/2

,

m4 (α, β, µ, δ) = 3

(
1 +

α2 + 4β2

δtα2
√
α2 − β2

)
. (8)

Let Mj denote the sample equivalent of mj for j = 1, 2, 3, 4; i.e., let M1, M2, M3 and
M4 respectively denote the sample mean, variance, skewness and kurtosis. In Section 4,
maximum likelihood parameter estimation is used in order to fit the N ◦ IG distribution
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to observed log-returns. No closed-form expressions are available for the maximum like-
lihood parameter estimates for this distribution and, therefore, a numerical optimisation
technique is used in order to arrive at the parameter estimates. However, the optimiser
used requires the specification of starting values. The method of moments estimates are
used for this purpose. The system of equations provided in (8) can be solved in order to
arrive at the method of moments estimates given by

α̂ =

√
3M4 − 4M2

3 − 9

M2(M4 − 5
3M

2
3 − 3)2

,

β̂ =
M3√

M2(M4 − 5
3M

2
3 − 3)

,

µ̂ = M1 −
3M3

√
M2

3M4 − 4M2
3 − 9

,

δ̂ =

√
27M2(M4 − 5

3M
2
3 − 3)

3M4 − 4M2
3 − 9

.

3.3 The geometric Meixner model

A random variable X : Ω→ R is said to follow a Meixner distribution with parameter set
(α, β, µ, δ) if it has density

f(x;α, β, µ, δ) =
(2 cos(β/2))2δ

2απΓ(2δ)
exp

(
β(x− µ)

α

) ∣∣∣∣Γ(δ +
i(x− µ)

α

)∣∣∣∣2 ,
where α > 0, |β| < π, −∞ < µ <∞, δ > 0 and Γ(·) denotes the complex gamma function.
We denote a random variable following this distribution by X ∼Meixner(α, β, µ, δ). The
characteristic function of X is

φ(u;α, β, µ, δ) =

 cos(β/2)

cosh
(
αu−iβ

2

)
2δ

exp(iµu).

Using the same notation as was used above, the first four standardised central moments
of the Meixner(α, β, µ, δ) distribution are

m1 (α, β, µ, δ) = µ+ αδ tan(β/2),

m2 (α, β, µ, δ) =
α2δ

2 (cos(β/2))2
,

m3 (α, β, µ, δ) = sin(β/2)
√

2/δ,

m4 (α, β, µ, δ) = 3 +
(2− cos(β))

δ
. (9)
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If the log-return process, Lt, is a Meixner process with parameter set (α, β, µ, δ), then
Lt is a Lévy process such that the random variable L1 follows a Meixner (α, β, µ, δ)
distribution. The increments of a Meixner (α, β, µ, δ) process are distributed as

Lt+s − Lt ∼Meixner(α, β, µs, δs),

for all s > 0.

Let Lt follow a Meixner (α, β, µ, δ) process under P. In this case, if the Esscher transform
is used in order to find a LEMM (denoted by Q), then Lt follows aMeixner (α, β + αξ, µ, δ)
process, where

ξ =
−1

α

(
β + 2 arctan

(
− cos(α/2) + exp ((µ− r) /2δ)

sin (α/2)

))
.

Using the same notation for the standardised sample central moments and solving the
system of equations provided in (9), one arrives at the method of moments estimates
given by

α̂ =
√
M2(2M4 − 3M2

3 − 6),

β̂ = sign(M3)arccos

(
M4 − 2M2

3 − 3

M4 −M2
3 − 3

)
,

δ̂ =
1

M4 −M2
3 − 3

,

µ̂ = M1 − α̂δ̂ tan

(
β̂

2

)
.

As was the case when considering the geometric N◦IG process model, maximum likelihood
estimation will be used and the Esscher transform in order to fit the geometric Meixner
process model. The method of moments estimates are, once again, used as starting values
for the optimisation algorithm used in order to obtain maximum likelihood estimates.

For a more detailed exposition of the Meixner distribution, the interested reader is referred
to [12].

4 Empirical results

In this section, the empirical results obtained when fitting the models described in the
previous section to various sets of observed option prices are given. The financial datasets
used are discussed followed by the numerical results that were obtained. The numerical
results presented were obtained using Matlab.
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4.1 Financial data used

The options considered are obtained from the American and European financial markets.
These markets were specifically selected because of their large size and number of partic-
ipants. The options prices considered are those of European call options.

The first dataset considered consists of the prices of 75 options on the S&P 500 index as at
close of business on 18 April 2002. The S&P 500 is an American capitalisation weighted
stock market index based on 500 large companies. The option prices used are reported in
[15]. This text also reported a risk-free interest rate in excess of dividends to be 0.7% on
the date in question.

The second dataset used below consists of 144 European call option prices available on the
Eurostoxx 50 index on 7 October 2003; this dataset is analysed in [16]. The Eurostoxx 50 is
an index comprised of the stocks of 50 large companies from 12 countries in the Eurozone.
On 7 October 2003 the index closed at 2476.61 Euros. The continuously compound risk
free interest rate is assumed to be 3% per annum in accordance with the assumptions
made by the authors of [16].

The final dataset discussed below contains option prices on the stock price of Google
Inc. This dataset contains 545 call option prices recorded on 11 May 2012; on this date
the stock price of Google Inc. closed on $605.23. This dataset was obtained from http:

//finance.yahoo.com; see [19]. In order to determine the risk-free interest rate to be used
when analysing this dataset, a discount rate of six month Treasury bills in the secondary
market is used. On 11 May 2012 this rate was 0.15% per annum. The dataset under
consideration contained 26 prices that were either higher or lower than can be reasonably
expected; for the details of the procedure used in order to identify the problematic option
price values, see [17]. It is the opinion of the authors that the erroneous prices could be
the result of human error (including typing mistakes) or some other shortcoming of the
method used to capture the data. As a result, these prices were removed from the dataset
and the analysis presented below is based on the remaining 519 option prices. Note that
no values were removed from the other datasets considered.

When deciding on the historical period to consider the stock or index prices, a balance
must be struck between the desire for a large dataset and the relevance of the prices.
The historical period considered is used to gain information on the (constantly changing)
current market conditions. If this period extends too far into the past it is possible that
the market conditions have changed considerably within this historical period. In the
empirical results below, historical stock and index prices for a period of one year prior to
the date on which the option prices were recorded, are used. These historical prices were
obtained from http://finance.yahoo.com.

4.2 Numerical results obtained

The numerical results presented below are obtained using the prices of the options available
on the S&P 500. Below the three different models discussed are fitted to these option
prices. Each of the models is considered in turn and fitted using the various methods
discussed above. As a result, a number of risk neutral measures are obtained. Given a
specific risk neutral measure, the main concern is twofold. First, the accuracy of the model

http://finance.yahoo.com
http://finance.yahoo.com
http://finance.yahoo.com
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in terms of replicating the observed option prices as measured by the RMSE, needs to be
determined. Secondly, the magnitude of the discrepancy between the densities associated
with the estimated objective measure and the risk neutral measure respectively, needs to
be determined.

For each risk neutral measure, Q, the corresponding density function (denoted by q) is
compared to a kernel density estimate obtained using the observed log-returns (this density
function is denoted below by p̂). This discrepancy between the measures is assessed by
means of a visual comparison between the two densities, as well as by the Kullback-Leibler
divergence (KLD) from p̂ to q, given by

DKL

(
P̂||Q

)
=

∫ ∞
−∞

p̂ (x) log

(
p̂ (x)

q (x)

)
dx.

The first model considered is the Black-Scholes. When fitting the normal distribution
to the observed log-returns and using the Esscher transform to obtain the LEMM, the
parameter estimates, RMSE and KLD, are(

µ̂, σ̂2
)

= (0, 0.012) , RMSE = 6.553, KLD = 0.020. (10)

When using a calibration procedure that aims to minimise the RMSE between the observed
and calculated option prices, the parameter estimates, RMSE and KLD are given by(

µ̂, σ̂2
)

= (0, 0.011) , RMSE = 6.190, KLD = 0.024. (11)

These results shown in (10) and (11) differ very little. Due to the similarity in the risk
neutral measures used (as is demonstrated by the small value of the KLD), the option
prices calculated under the two risk neutral measures are similar.

Figure 1 shows a kernel density estimate of the distribution of the log-returns as well as the
two risk neutral densities associated with the estimation procedure (denoted by “Estimated
density”) and the calibration procedure (denoted by “Pricing density”) respectively. The
figure indicates that the three densities in question are similar.

Figure 2 shows the observed market prices as well as the calculated prices where the risk
neutral density is obtained using the results of the calibration procedure. The market
prices of the options are shown using black lines; the lines are obtained using linear in-
terpolation between the option prices considered. The same convention is used in Figures
3 and 4. The calculated prices fit the market prices, as a function of time to maturity
(T ) and moneyness (log K

S0
) quite well for at-the-money (ATM) options, where K = S0,

as well as for some of the in-the-money (ITM) options, where K < S0. However, for all
of the various values of T , most of the out-the-money (OTM) calibrated option prices are
higher than the observed market prices. In Figures 2, 3 and 4, different colours are used
in order to distinguish between different times to maturity.

Attention is now turned to the results obtained using the geometric N ◦ IG model. For
this model, no closed-form formulae are available for the maximum likelihood estimators
for the parameters. In order to perform maximum likelihood estimation, Nelder-Mead
optimisation (see [13]) is applied using Matlab’s fminsearch. This method requires the
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Figure 1: Density functions for the Black-Scholes model.

specification of starting values. The method of moments estimators (for which the formulae
are provided in Section 3) are used as starting value for the optimisation algorithm.

When performing parameter estimation using maximum likelihood estimation, and using
the Esscher transform to obtain a LEMM, the results obtained are(

α̂, β̂, µ̂, δ̂
)

= (168.396,−9.203, 0.001, 0.022) , RMSE = 6.442, KLD = 0.011. (12)

When comparing the results reported in (12) to those reported in (10), it is clear that the
additional flexibility that the N ◦IG distribution offers over that of the normal distribution
reduces the KLD. However, this improved ability to model the shape of the density function
does not translate into a substantial reduction in the RMSE.

Next, the calibration of the geometric N ◦IG model to the observed stock prices is consid-
ered. Since no closed-form expressions are available for the parameter values to be used,
Nelder-Mead optimisation is applied a second time. In order to obtain starting values for
the optimisation algorithm, a random procedure is used as follows. A range of possible
starting values for each of the parameters is specified; these ranges are chosen so as to
include parameter values that are deemed likely to be close to the values providing an
optimal calibration (since the optimisation problem considered is generally non-convex
and the optimiser used may converge to a local optimum). For each of the parameters,
one thousand random starting values are generated from a uniform distribution on the
chosen range. The RMSE is calculated for each of the one thousand resulting parameter
sets, and the parameter set with the smallest RMSE is used as the starting values for the
optimisation algorithm. The individual ranges used are omitted for the sake of brevity,
but can be obtained from the authors upon request.
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Figure 2: Market prices and calibrated option prices under the Black-Scholes model.

This paper numerically demonstrates that, in certain cases, there is an appreciable dif-
ference between the densities associated with the risk neutral and estimated objective
densities. Note that, in the case of the geometric N ◦ IG model, both of these measures
are obtained using an optimisation procedure, but the starting values used by the optimiser
differs. The authors would like to emphasise that the observed differences in the densities
is not explained by the difference in the starting values used. The vast differences in the
densities obtained remain if the same starting values are used in the two optimisation
procedures.

When using a calibration procedure in order to fit the geometric N ◦ IG model to the
observed option price data, the results obtained are given by(

α̂, β̂, µ̂, δ̂
)

= (8.550,−5.334, 0.001, 0.001) , RMSE = 3.027, KLD = 1.299. (13)

The value of the RMSE reported in (13) is noticeably smaller than the corresponding value
reported in (11). Figure 3 shows the observed market prices as well as the calculated prices
where the risk neutral density is obtained using the results of the calibration procedure. In
this case, the results for ITM option prices are similar to those obtained using the Black-
Scholes model. However, the calibrated options prices for OTM options corresponds more
closely to the observed market prices. This observation is confirmed in Figure 4, in which
the calculated prices using the calibrated Black-Scholes and geometric N ◦ IG models are
compared. The results are shown for ATM as well as OTM options.

We conclude that, for this specific set of option prices, the risk neutral measure of the
N ◦ IG model can be chosen such that the calculated prices of the options correspond
more closely to the observed values than is the case when using the Black-Scholes model.
The results reported in (12) also indicate that the risk neutral measure can be chosen
in such a way that the corresponding density closely matches that of the observed log-
returns. However, the densities associated with these two risk neutral measures (one
obtained using maximum likelihood parameter estimation and the other obtained using
calibration) differ substantially; note that the KLD reported for the calibration related
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Figure 3: Market prices and calibrated option prices under the geometric N ◦ IG model.

Figure 4: Market option prices compared to the calibrated option prices under the Black-Scholes

and geometric N ◦ IG models.

to the geometric N ◦ IG model is appreciably larger than the other KLDs reported thus
far. In order to further appreciate this discrepancy, consider Figure 5. This figure shows a
kernel density estimate of the observed log-returns using a solid line with the risk neutral
density obtained by calibration using a dashed line. It is clear that there is a substantial
difference between the two densities.

As was discussed above, it is to be expected that the density obtained using a calibration
procedure would differ from the estimated density based on historical log-returns. How-
ever, the magnitude of the observed difference when calibrating the geometric N◦IG model
to the observed option prices is unexpected. Consider, for example, the third and fourth
standardised central moments associated with the risk neutral measure; the skewness is
calculated to be -26.3 while the kurtosis is 1516. The corresponding sample quantities
based on the observed log-returns data are -0.21 and 4.17 respectively. While it is entirely
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Figure 5: Density functions for the geometric N ◦ IG model (full calibration).

possible for the moments associated with the risk neutral measure to be different from
those associated with the observed log-returns, it seems unlikely that the future skewness
of the distribution will be 123 time that of observed historical skewness. When comparing
the kurtosis, this difference is even more pronounced. In this case the ratio between the
kurtosis of the risk neutral measure and the historical log-retuns is calculated to be 364.

The large difference between the objective and risk neutral measures means that the prices
of the options are calculated under the assumption that the future behaviour of the log-
returns will differ drastically from its previous behaviour. As a result, if the risk neutral
measure provides an accurate description of the future distribution of the log-returns,
then the density of the log-returns observed after 18 April 2002 should resemble that of
the risk neutral measure and not the historical density. Figure 6 shows two kernel density
estimates associated with log-returns for one year before and one year after the mentioned
date. Although there is a noticable difference between the two estimated densities, the
difference is much less pronounced than the difference between the density estimate based
on the historical log-returns and the risk neutral measure obtained using calibration.

The discrepancy between the historical density and the future density can be measured
using the KLD. Consider the two kernel density estimates shown in Figure 6. The KLD
between the historical and future densities is calculated to be 0.14, which is only a small
fraction of the reported KLD in (13). In fact, if the KLD in a similar manner on two year
rolling windows starting on 1 January 1990 and ending on 5 April 2019, an observation is
made that 95% of the calculated KLD values are in the interval [0.0163; 0.4364].
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Figure 6: Historical and observed future density functions.

The magnitude of the difference between the estimated objective measure and the risk
neutral measure obtained using calibration is disconcerting. This large deviation is neither
observed when considering the distribution of future returns, nor is there a theoretical
justification for this difference. However, the calibration procedure is clearly able to reduce
the RMSE. In an attempt to find a compromise between a small RMSE value and a risk
neutral density that closely resembles the estimated density of the historical log-returns,
attention is turned to a procedure that shall be referred to as restricted calibration.

The calibration procedure used above allows the parameters of the model to vary freely in
an attempt to minimise the RMSE. The only restriction imposed is that the discounted
stock price process be a martingale under the resulting probability measure. When con-
sidering a restricted calibration, a second restriction is imposed on the parameters of the
model. This restriction is that the KLD between the estimated objective measure and
the resulting risk neutral measure does not exceed a specified value, say d. Mathemati-
cally, the restricted calibration procedure can be expressed using (6), where Q is defined
to be the collection of all measures Q such that e−rtSt forms a martingale under Q and

DKL

(
P̂||Q

)
≤ d. When using the restricted calibration procedure with a conservative

d = 0.5, for example, the results obtained for the geometric N ◦ IG model are

(α, β, µ, δ) = (27.660,−14.083, 0.001, 0.002) , RMSE = 4.810, KLD = 0.5.

These results were obtained using the parameters in (12) as starting values. Interestingly,
the KLD for this probability measure is calculated to be exactly 0.5, meaning that the
restricted calibration procedure converged to a risk neutral measure as different from the
objective probability measure (as measured by the KLD) as was allowed. Figure 7 shows
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the kernel density estimate of historical log-returns as well as the risk neutral density
obtained using restricted calibration. Although there is a clear difference between the
estimated objective and risk neutral measures, this difference is much less pronounced
than is the case when using full calibration.

Figure 7: Density functions for the geometric N ◦ IG model (restricted calibration).

When using restricted calibration, the value used for d is subjective and can be chosen
by the modeller. The results discussed above seem to indicate that the RMSE can be
decreased at the price of allowing greater differences between the estimated objective
and risk neutral measures (as measured by the KLD). One possible way of performing
calibration is to vary the value of d when using restricted calibration and to choose a
value of d that allows an acceptable trade off between the RMSE and KLD measures. In
order to illustrate this, a range of d values was selected and the corresponding RMSE was
calculated in each case. The results are shown in Figure 8. The figure clearly indicates
that the RMSE is a decreasing function of the maximum KLD value allowed.

We conclude the discussion about the geometric N ◦ IG distribution with a note about
the fact that the model under discussion is parameterised daily. The excessive differ-
ences between the estimated objective and risk neutral densities obtained using full and
restricted calibration can be seen in Figures 5 and 7. In the majority of scientific papers,
the models used are parameterised annually (see, for example, [16]), meaning that the
reported parameters correspond to the density of the annual log-returns. However, these
parameters are not estimated based on annual log-returns, but rather daily log-returns.
Figure 7 shows the densities associated with the annual log-returns for each of the three
risk neutral measures calculated for the geometric N ◦ IG model. When comparing the
densities based on a annual time scale (using the convolution formula provided in (7)),
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Figure 8: RMSE as a function of the KLD.

the observed differences between the density functions is perceived to be markedly less
pronounced. The authors believe that this mismatch between the time scales associated
with the data used and the reported parameters is misleading and should be avoided.

In order to demonstrate that the results discussed above are not limited to the geometric
N ◦ IG model, attention is now turned to the geometric Meixner model. When fitting
the Meixner distribution to the observed historical log-returns and applying the Esscher
transform,(

α̂, β̂, µ̂, δ̂
)

= (0.014,−0.120, 0.001, 1.294) , RMSE = 6.448, KLD = 0.011.

Note the similarity between the RMSE obtained using the geometric N ◦ IG and Meixner
models. When using a full calibration procedure in order to obtain a risk neutral measure,

(α, β, µ, δ) = (0.021,−2.929, 0.001, 0.008) , RMSE = 3.733, KLD = 2.921

is obtained. Again, the RMSE obtained using this model is similar to the RMSE obtained
using the previous model. Figure 10 compares the kernel density estimate obtained using
the observed historical log-returns to the density of the risk neutral measure obtained
using full calibration. In this case the KLD is even more extreme than was observed when
using the geometric N ◦ IG model.

As was the case before, the risk neutral measure obtained using a full calibration procedure
clearly differs substantially from the estimated objective probability measure. As a result,
we consider the restricted calibration procedure where the KLD between the estimated
objective and risk neutral densities is not allowed to exceed 0.5. Using this calibration
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Figure 9: Annual risk neutral densities for the geometric N ◦ IG model.

procedure,

(α, β, µ, δ) = (0.030,−2.001, 0.004, 0.085) , RMSE = 5.313, KLD = 0.5.

is obtained. Figure 11 compares the estimated objective density as well as the risk neutral
measure obtained using restricted calibration as before.

Note the similarities between the results obtained when using the geometric N ◦ IG and
the geometric Meixner models. These similarities are observed in the case where the
maximum likelihood estimation and the Esscher transform are employed as well as the
cases where full and restricted calibration are used. For ease of reference, Table 1 provides
a summary of the results obtained using each of the models and fitting procedures. The
following short-hand notation is used in the tables below; ET is short for Esscher transform
(this indicates that the results were obtained using maximum likelihood estimation and
the Esscher transform), FC is short for full calibration, while RC is short for restricted
calibration.

Tables 2 and 3 contain the results associated with the Eurostoxx and Google Inc. data
respectively.

When comparing the results presented in Tables 2 and 3 above to those in Table 1, several
similarities are noticed. When using maximum likelihood estimation and the Esscher
transform, the risk neutral measures obtained under the geometric N ◦ IG and Meixner
models deviates from the estimated objective probability appreciably less than is the
case under the Black-Scholes model. However, when using these probability measures to
calculate arbitrage free option prices, there is no corresponding reduction in the RMSE
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Figure 10: Density functions for the geometric Meixner model (full calibration).

Models Parameters RMSE KLD

Black-Scholes (ET) (0, 0.012) 6.553 0.020
Black-Scholes (C) (0, 0.011) 6.190 0.024
N ◦ IG (ET) (168.396,−9.203, 0.001, 0.022) 6.442 0.011
N ◦ IG (FC) (8.550,−5.334, 0.001, 0.001) 3.027 1.299
N ◦ IG (RC) (27.660,−14.083, 0.001, 0.002) 4.810 0.500
Meixner (ET) (0.014,−0.120, 0.001, 1.294) 6.448 0.011
Meixner (FC) (0.021,−2.929, 0.001, 0.008) 3.733 2.921
Meixner (RC) (0.030,−2.001, 0.004, 0.085) 5.313 0.500

Table 1: Results for the S&P 500 option prices.

observed when changing from the Black-Scholes to either of the other models. When
the results obtained using calibration are considered, it is noticed that, in this case, the
geometric N ◦ IG and Meixner process models far outperform the Black-Scholes in terms
of the RMSEs obtained. However, the discrepancy between the risk neutral measure
used and the estimated objective measure (as measured by the KLD) is substantial. In
each of the cases considered, the geometric N ◦ IG process model slightly outperforms
the geometric Meixner model in terms of the calculated RMSEs; the former model also
generally provides smaller KLDs than is the case for the latter model.

Note that the three numerical examples used are based on data recorded at three different
times (although two of the three dates in question differ only by roughly one and a half
year). Also, the three datasets used were recorded in two different financial markets; the
American and European markets. Finally, the examples used consider options for which
the underlying assets comprise both a single stock and two indices. Of course, no general
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Figure 11: Density functions for the geometric Meixner model (restricted calibration).

Models Parameters RMSE KLD

Black-Scholes (ET) (0, 0.020) 131.659 0.020
Black-Scholes (C) (0, 0.014) 31.267 0.208
N ◦ IG (ET) (74.873, 9.873,−0.004, 0.030) 132.667 0.009
N ◦ IG (FC) (7.312,−5.472, 0.001, 0.001) 13.180 1.880
N ◦ IG (RC) (37.217,−19.740, 0.003, 0.005) 27.893 0.500
Meixner (ET) (0.032, 0.312,−0.004, 0.792) 132.164 0.008
Meixner (FC) (0.003,−3.127, 0.001, 0.003) 14.254 17.561
Meixner (RC) (0.002,−2.391, 0.059, 9.491) 30.889 0.497

Table 2: Results for the Eurostoxx option prices.

conclusions can be drawn based on the examples included. However, the variety mentioned
above seems to suggest that the observations made are not limited to a single time, market
or type of underlying asset.

5 Conclusion

In this paper, three option pricing models are considered; the Black-Scholes model as well
as the geometric normal inverse Gaussian (N ◦ IG) and Meixner models. Under each of
these models, the log-return process is modelled using a Lévy process. Under the Black-
Scholes model, the log-returns follow a normal distribution. Under the remaining models,
the log-returns are realised from more flexible models.
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Models Parameters RMSE KLD

Black-Scholes (ET) (0, 0.019) 10.141 0.060
Black-Scholes (C) (0, 0.018) 10.095 0.058
N ◦ IG (ET) (47.516,−7.689, 0.002, 0.015) 10.028 0.013
N ◦ IG (FC) (6.729,−5.527, 0.001, 0.001) 8.106 1.370
N ◦ IG (RC) (18.187,−12.250, 0.003, 0.003) 9.104 0.500
Meixner (ET) (0.047,−0.382, 0.003, 0.292) 10.037 0.014
Meixner (FC) (0.002,−3.136, 0.002, 0.003) 8.570 24.266
Meixner (RC) (0.065,−2.083, 0.005, 0.044) 9.475 0.500

Table 3: Results for the Google Inc. option prices.

Several methods can be used in order to fit a given financial model to observed data.
A method often employed in practice is a calibration technique that entails choosing the
parameters of the model so as to minimise some discrepancy measure between the observed
and calculated option prices. This paper provides a numerical comparison between the
density of the log-returns obtained using calibration and the estimated density. The
paper shows that, in the examples considered, the geometric N ◦ IG and Meixner models
outperform the Black-Scholes model in terms of their ability to provide option prices that
resemble those observed in the market. However, when using these models, the densities
resulting from the calibration procedure are substantially different from the estimated
density of the observed log-returns. This means that the calculation of the option prices
are performed under materially different assumptions than are observed in the market.
This phenomenon is not observed when using the Black-Scholes model.

The aim of this paper is not to discourage the use of flexible financial models like the
geometric N ◦ IG and Meixner models. In fact, in the examples considered, these models
are able to outperform the Black-Scholes model in terms of the root mean square error
(RMSE) calculated between the observed option prices and the option prices calculated
under the various models. The results presented in the paper serve to emphasise that,
when a calibration procedure is used in order to fit flexible models containing multiple
parameters, the resulting density function will not necessarily resemble that of the log-
returns observed in the market. A possible solution to this problem is proposed; the
calibration might be restricted in the sense that the parameters of the model are chosen
so as to minimise the RMSE between the observed and calculated option prices, subject
to the restriction that the density obtained using calibration does not differ more than
a prespecified amount from the estimated density of the observed log-returns. Generally,
the enforcement of this restriction will result in larger RMSE values. However, the use of
this method ensures that the density obtained using calibration resembles the estimated
density of the log-returns.
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