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Abstract
A continuous review (s, S) inventory system at a service facility with finite homogeneous
sources of demands and retrial is analysed. The lifetime of each item is assumed to be
exponential. Before items are delivered to the customers, some basic service on the item must
be performed. It is known as a regular or main service. The service may get interrupted
according to a Poisson process and it restarts after an exponentially distributed time. If the
server is idle at the time of arrival of a customer and the inventory level is positive, then the
service begins immediately. After the completion of regular service, a customer may either
abandon the system forever or demand for a second service from the same server, which is
multi-optional. If any arriving customer finds that the server is busy or inventory level is zero,
he/she either enters into the orbit with probability p or balks (does not enter) with probability
1 − p. The stationary distribution of the number of customers in the system, server status
and the inventory level is obtained by the matrix method. The Laplace-Stieltjes transform
of the waiting time of the tagged customer is derived. Various system performance measures
are derived and the total expected cost rate is computed under a suitable cost structure. A
numerical illustration is given.

Key words: (s, S) policy, service interruption, finite source, retrial, repair, essential and optional

service.

1 Introduction

In recent years, there has been a considerable interest in the stochastic inventory system
in which an item demanded by the customer is not immediately delivered. This situation
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arises when the items in the inventory needs some time for preparation and hence it is
considered as having positive service time. Sigman and Simchi-Levi [17] introduced the
notion of inventory with positive service time. They assumed that the service time follows
an arbitrary distribution and the customers arrive according to a Poisson process wherein
the demand is for a single item per customer. Berman et al. [3] formulated an inventory
model where both demand and service rates are assumed to be deterministic and constant.
Later Berman and Kim [4] considered a service facility that provides service to customers
using items of inventory with the assumption of Poisson arrival, exponential service times
and zero lead times. Berman and Sapna [6] studied a finite capacity inventory model with
Poisson arrival, arbitrarily distributed service times and zero lead times. Berman and
Kim [5] analysed a queueing-inventory system for service facilities with unlimited waiting
space for customers. Maike Schwarz et al. [16] have considered a M/M/1 queueing system
with attached inventory. They assumed a Poisson demand, exponentially distributed lead
times and lost sales for infinite and finite waiting rooms.

In all previously mentioned papers, the researchers analysed a queueing inventory model
with a service facility and infinite number of sources. Nevertheless, in many real life
situations, it is important to take into account the fact that the number of customers
in the source decreases as the number of customers in the system increases. This leads
to the study of the inventory model with a finite number of sources. In this paper, a
single server queueing-inventory system with a finite number of sources is discussed. A
continuous review perishable inventory model with finite population was first initiated
by Sivakumar [18]. He assumed that the customers arriving at a stock-out period enter
into the orbit and they retry after some random time. The lifetime of each item follows
an exponential distribution. Following this, a number of papers on inventory models
with a finite population have emerged. Multi-server retrial inventory system with a finite
number of sources was studied by Yadavalli et al. [24] in which the customers arrive
according to a quasi random process. The service times and the lead times were assumed
to be exponential. Shophia Lawrence et al. [15] analysed a service facility with a finite
population in which items in inventory are perishable and customer demand is satisfied
only after performing some service on it. The service time and the lead time have a Phase
type distribution. The lifetime of each item follows a negative exponential distribution.

Many researchers have studied retrial queueing systems with a finite and infinite number
of sources extensively. Artalejo [1], Falin & Artalejo [7] and Falin & Templeton [8] provide
reviews on this queueing system. A numerical illustration of inventory systems with retrial
was studied by Artalejo et al. [2]. The study of inventory models with server interruptions
is a topic that has received considerable attention in the last decade. The inventory model
with instantaneous replenishment is discussed by Krishnamoorthy et al. [12] wherein the
service is subject to interruptions. Krishnamoorthy et al. [13] made an extensive study of
an (s, S) inventory model with the assumption of Poisson arrival and exponential service
time. According to a Poisson process the service may get interrupted and it restarts after
an exponentially distributed time. Yadavalli et al. [22] analysed a finite source perishable
inventory system with a service facility having two heterogeneous servers and repeated
attempts. They assumed that the first server is perfectly reliable and the second server is
subject to interruptions.
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From the above papers, the customer will move away from the system after completion
of regular or essential service. However, in day-to-day life, it does not always happen.
In some queueing situations all arriving customers require the essential service, whereas
a few of them may further demand the subsidiary service provided by the same server
immediately after completion of the regular service. Several researchers have studied the
concept of additional optional service with queues [11, 19, 20]. Jeganathan [9] investigated
a continuous review perishable (s, S) inventory system with N optional services, in which
some of the arriving customers asked for second optional service as soon as the completion
of first essential service and the second service is multi-optional. He assumed that the
customer arrivals follow a Poisson process. Yadavalli & Jeganathan [23] analysed a finite
source perishable inventory system with second optional service and server interruptions.
Recently, Jeganathan et al. [10] analysed a retrial queueing-inventory system with priority
customers and second optional service.

A finite population Markovian inventory system with server interruptions, multi-optional
service and repeated attempts is considered in this paper. The rest of the paper is or-
ganized as follows. A detailed description of the model is explained in §2. In §3, the
mathematical solution of the model is carried out. The Laplace-Stieltjes transform of
waiting time distribution for customers in the orbit is derived in §4. Some key system per-
formance measures are obtained in §5, while §6 is dedicated to cost analysis and sensitivity
investigation. Conclusions are given in the final section.

2 Model description

In this investigation, a finite source Markovian inventory system is considered with the
following assumptions. Consider a single server perishable inventory system, where the
primary arrivals are generated from N , 1 < N <∞ homogeneous sources. The inventory
is replenished according to (s, S) ordering policy. According to this, an order for Q(=
S − s > s + 1) items are placed when the on-hand inventory level falls below s. The
requirement S − s > s + 1 assures that after a replenishment, the inventory level will
be greater than the reorder level. Otherwise it is impossible to place a reorder which
leads to perpetual shortage. The positive lead-time of the replenishment is assumed to be
negative exponential with the rate β(> 0). The lifetime of each commodity has a negative
exponential distribution with the parameter γ(> 0). It is assumed that during service,
the items in inventory cannot be perished.

The server can retain in three states, namely idle, busy and interruption. Likewise, each
source can also be in three states, namely free, retrial and under service.

1. If a source is in free state at time t a primary customer can arrive during the interval
(t, t + dt) with probability λdt + o(t). It is assumed that the waiting space is not
available in front of the server. When the server is in idle state and the inventory
level is positive then the demand is served immediately. Hence, the source moves
into “under service” state and the server moves into “busy” state.

2. If the demand finds the inventory level zero or server busy or server is on interruption
at the moment of their arrival, then they either abandon (with non-zero probability
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p) the area of service and join a pool of blocked customers called orbit or balk the
system (with probability 1− p).

In this paper, the classical retrial method is followed. More explicitly, the probability
of a repeated attempt in an interval (t, t + dt) given that i customers are in the orbit
attempt is iθ+ o(dt). If the server is idle with positive inventory then it provides the first
essential service (FES) to all arriving customers. The first essential service is also referred
to as regular service or main service. It is assumed to be exponentially distributed with
parameter µ0. As soon as the first essential service of each demand is completed, then
with probability rk, 1 ≤ k ≤ J , a customer may opt to receive a second optional service
(SOS) from J(J ≥ 1) kinds of different services (i.e., Type1, Type2,. . . , Type J), or else,
with probability r0=1−∑J

k=1 rk the customer may opt to abandon the system and then
the server becomes idle. The service time of the second optional service is assumed to be
distributed exponentially with parameter µk, k = 1, 2, . . . , J .

When the server provides the first essential service to a customer, the service may get
interrupted according to a Poisson process of rate α0. In the second multi-optional service,
the service may get interrupted with an exponential rate αk, 1 ≤ k ≤ J . It is assumed
that while the server is under interruption, no further interruption can befall the server.
The repair time of both service phases (first essential service and second multi- optional
service) are assumed to be exponentially distributed with parameters η0 and ηk, 1 ≤ k ≤ J ,
respectively. Figure 1 shows a typical picture of the model. All random variables are
independent of each other.

Figure 1: Dynamics of the queueing inventory system with finite source.

3 Mathematical formulation of the model

Let l(t) and x(t) indicate the inventory level and the number of customers in the orbit at
time t, l(t) ∈ {0, 1, 2, . . . , S} and x(t) ∈ {0, 1, 2, . . . , N}, and let y(t) denote the status of
the server by
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y(t) =





S0, if the server is idle at time t,
S1, if the server is busy with FES at time t,
S2, if the server is on interruption during FES at time t,
1, if the server is busy with Type 1 service at time t,
2, if the server is busy with Type 2 service at time t,
...

...
J − 1, if the server is busy with Type J − 1 service at time t,
J, if the server is busy with Type J service at time t,
J + 1, if the server is on interruption during Type 1 service at time t,
J + 2, if the server is on interruption during Type 2 service at time t,
...

...
2J − 1, if the server is on interruption during Type J − 1 service at time t,
2J, if the server is on interruption during Type J service at time t.

The activities of the system can be expressed by a three-dimensional stochastic process
{a(t) = (l(t), y(t), x(t)), t ≥ 0}, with the finite discrete state space E, where

E = {0 ≤ i1 ≤ S, i2 = S0, 0 ≤ i3 ≤ N} ∪
{1 ≤ i1 ≤ S, i2 = S1, S2, 0 ≤ i3 ≤ N − 1} ∪
{0 ≤ i1 ≤ S, 1 ≤ i2 ≤ 2J, 0 ≤ i3 ≤ N − 1}.

Due to the assumptions of a Poisson arrival process, exponentially distributed service
times, the replenishment process, the repair process and the interruption process {a(t), t ≥
0} is a Homogeneous Continuous Time Markov Chain (HCTMC). Its limiting distribution
is indicated by π(i1, i2, i3):

π(i1,i2,i3) = lim
t→∞

Pr[l(t) = i1, y(t) = i2, x(t) = i3|l(0), y(0), x(0)].

In the sequel, Ik refers to an identity matrix of order k, e refers to a column vector of
appropriate dimension containing all ones, [A]ij denotes the entry at (i, j)th position of a
matrix A, δ is the delta function defined by δij = 1 if i = j, otherwise δij = 0, H(x) is

the Heaviside function i.e. H(x) = 1 if x ≥ 0, otherwise H(x) = 0 and k ∈ V j
i denotes

k = i, i+ 1, . . . j.

The steady-state equation of {a(t) = (l(t), y(t), x(t)), t ≥ 0} satisfies the following balance
equations.

For i1 ∈ V S
0 , i2 = S0, and i3 ∈ V N

0 ,

((N − i3)λ+H(s− i1)β + i1γ + δ̄i10i3θ)π
(i1,i2,i3) = δ̄i1S(i1 + 1)γπ(i1+1,i2,i3) +

δ̄i30δi11p(N − i3)λπ(i1−1,i2,i3−1) +H(i1 −Q)βπ(i1−S+s,i2,i3) + (1)

δ̄i3N δ̄i1Sr0µ0π
(i1+1,S1,i3) + δ̄i3N

J∑

k=1

µkπ
(i1,k,i3).
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For i1 ∈ V S
1 , i2 = S1, and i3 ∈ V N−1

0 ,

(p(N − (i3 + 1))λ+H(s− i1)β + δ̄i11(i1 − 1)γ +

J∑

k=0

rkµ0 + α0)π
(i1,i2,i3) =

δ̄i30p(N − i3)λπ(i1,i2,i3−1) +H(i1 − (Q+ 1))βπ(i1−S+s,i2,i3) + (2)

δ̄i1Si1γπ
(i1+1,i2,i3) + (i3 + 1)θπ(i1+1,S0,i3+1) + (N − i3)λπ(i1,S0,i3) + η0π

(i1,S2,i3).

For i1 ∈ V S
1 , i2 = S2, and i3 ∈ V N−1

0 ,

(p(N − (i3 + 1))λ+H(s− i1)β + δ̄i11(i1 − 1)γ + η0)π
(i1,i2,i3) = δ̄i30p(N − i3)λπ(i1,i2,i3−1)

+H(i1 − (Q+ 1))βπ(i1−S+s,i2,i3) + δ̄i1Si1γπ
(i1+1,i2,i3) + α0π

(i1,S1,i3). (3)

For i1 ∈ V S
0 , i2 ∈ V J

1 , and i3 ∈ V N−1
0 ,

(p(N − (i3 + 1))λ+H(s− i1)β + δ̄i10i1γ +

J∑

k=1

(δi2kµk) +

J∑

k=1

(δi2kαk))π(i1,i2,i3) =

δ̄i30p(N − i3)λπ(i1,i2,i3−1) +H(i1 −Q)βπ(i1−S+s,i2,i3) + δ̄i1S(i1 + 1)γπ(i1+1,i2,i3) (4)

+δ̄i10{
J∑

k=1

rkµ0}π(i1,S1,i3) + {
J∑

k=1

δi2J+kηk}π(i1,J+k,i3).

For i1 ∈ V S
0 , i2 ∈ V 2J

J+1, and i3 ∈ V N−1
0 ,

(p(N − (i3 + 1))λ+H(s− i1)β + δ̄i10i1γ +
J∑

k=1

(δi2kηk))π(i1,i2,i3) =

δ̄i30p(N − i3)λπ(i1,i2,i3−1) +H(i1 −Q)βπ(i1−S+s,i2,i3) + δ̄i1S(i1 + 1)γπ(i1+1,i2,i3) (5)

+{
2J∑

k=J+1

δi2kα(i2−J)}π(i1,i2−J,i3).

To mark the steady-state equations in expressions of matrix form, states in E are resched-
uled in the following lexicographical ordering:

≪ i1 ≫ =

{
� i1, i2,�, i1 = 1, 2, . . . S, i2 = S0, S1, S2, 1, 2, . . . , 2J ;
� i1, i2,�, i1 = 0, i2 = S0, 1, 2, . . . , 2J ;

� i1, i2 � =





< i1, S0, 0 >,< i1, S0, 1 >, . . . , < i1, S0, N >, i1 = 0, 1, 2, . . . S;
< i1, i2, 0 >,< i1, i2, 1 >, . . . , < i1, i2, N − 1 >, i1 = 1, 2, . . . S,

i2 = S1, S2;
< i1, i2, 0 >,< i1, i2, 1 >, . . . , < i1, i2, N − 1 >, i1 = 0, 1, 2, . . . S,

i2 = 1, 2, . . . , 2J ;
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and define the corresponding vectors

Π(0) = (Π(0,S0),Π(0,1),Π(0,2), . . . ,Π(0,2J)),

Π(i1) = (Π(i1,S0),Π(i1,S1),Π(i1,S2),Π(i1,1), . . . ,Π(i1,2J)), i1 ∈ V S
1 ;

Π(0,S0) = (π(0,S0,0), π(0,S0,1), . . . , π(0,S0,N)),

Π(0,i2) = (π(0,i2,0), π(0,i2,1), . . . , π(0,i2,N−1)), i2 ∈ V 2J
1 ;

Π(i1,S0) = (π(i1,S0,0), π(i1,S0,1), . . . , π(i1,S0,N)), i1 ∈ V S
1 ;

Π(i1,S1) = (π(i1,S1,0), π(i1,S1,1), . . . , π(i1,S1,N−1)), i1 ∈ V S
1 ;

Π(i1,S2) = (π(i1,S2,0), π(i1,S2,1), . . . , π(i1,S2,N−1)), i1 ∈ V S
1 ;

Π(i1,i2) = (π(i1,i2,0), π(i1,i2,1), . . . , π(i1,i2,N−1)), i1 ∈ V S
1 , i2 ∈ V 2J

1 .

Then, Π(i1) is the probability vector i1th inventory level with each one element, stating
a particular mixture of the inventory level and status of the server and the number of
customers in the orbit. Using the vectors Π(i1), i1 ∈ V S

0 , the system of linear equations
(3.1)− (3.5) can be written as follows:

Πi1Di1 + Πi1−1Ci1−1 = 0, i1 = 1, 2, . . . , Q,

Πi1Di1 + Πi1−1Ci1−1 + Π(i1−1−Q)A1 = 0, i1 = Q+ 1,

Πi1Di1 + Πi1−1Ci1−1 + Π(i1−1−Q)A = 0, i1 = Q+ 2, Q+ 3, . . . , S,

ΠSCS + ΠsA = 0.

Then, the limiting distribution vector Π = (Π(0),Π(1), . . . ,Π(S)) is the unique key of the
system

ΠΘ = 0 (6)

and the normalization condition

Πe =
∑∑∑

(i1,i2,i3)

π(i1,i2,i3) = 1, (7)

where Θ = ((d((i1, i2, i3), (j1, j2, j3)))), (i1, i2, i3), (j1, j2, j3) ∈ E is the infinitesimal gen-
erator matrix of {a(t), t ≥ 0} can be expressed as follows:

Θ =

≪ S ≫
≪ S − 1 ≫

...
≪ s+ 1 ≫
≪ s≫

≪ s− 1 ≫
...

≪ 1 ≫
≪ 0 ≫




CS DS

CS−1 DS−1
· · ·

· · · Cs+1 Ds+1

A Cs Ds

A Cs−1
· · · · · ·
A · · · C1 D1

A1 C0
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where A1 = [a1(i1,i2,i3),(j1,j2,j3)] is a rectangular matrix of size (2J+1)N+1×(2J+3)N+1
and its elements are given by

a1(i1,i2,i3),(j1,j2,j3) =





β, j1 = Q, j2 = i2, j3 = i3,
i1 = 0, i2 = S0, i3 ∈ V N

0 ,

j1 = Q, j2 = i2 j3 = i3,

i1 = 0, i2 ∈ V 2J
1 , i4 ∈ V N−1

0 ,

0, otherwise.

The matrix A is a square matrix of size ((2J + 3)N + 1) and it can be expressed as
A = β × I((2J+3)N+1).

The matrices Di1 = [di1 (i1,i2,i3),(j1,j2,j3)], i1 ∈ V S
1 govern the transitions from the state

≪ i1 ≫ into the state ≪ i1 − 1 ≫ and, hence D1 is a rectangular matrix of size
(2J + 3)N + 1× (2J + 1)N + 1 and other matrices Di1 , i1 ∈ V S

2 are square matrices of size
((2J + 3)N + 1) with their the following elements, for k ∈ V J

1

di1 (i1,i2,i3),(j1,j2,j3) =





i1γ, j1 = i1 − 1, j2 = i2, j3 = i3,
i1 ∈ V S

1 , i2 = S0, i3 ∈ V N
0 ,

j1 = i1 − 1, j2 = i2, j3 = i3,

i1 ∈ V S
1 , i2 ∈ V 2J

1 , i3 ∈ V N−1
0 ,

(i1 − 1)γ, j1 = i1 − 1, j2 = i2, j3 = i3,

i1 ∈ V S
2 , i2 = S1, S2 i3 ∈ V N−1

0 ,
r0µ0, j1 = i1 − 1, j2 = S0, j3 = i3,

i1 ∈ V S
1 , i2 = S1, i3 ∈ V N−1

0 ,

rkµ0, j1 = i1 − 1, j2 = k, j3 = i3,

i1 ∈ V S
1 , i2 = S1, i3 ∈ V N−1

0 ,

0, otherwise.

Finally, the matrices Ci1 = [ci1 (i1,i2,i3),(j1,j2,j3)], i1 ∈ V S
0 represents all transitions within

≪ i1 ≫ and C0 is a square matrix of order (N(2J + 1)) + 1 and Ci1 , i1 ∈ V S
1 are square

matrices of order (N(2J + 3)) + 1 with the following elements, for i1 = 0, k ∈ V 2J
1

c0(i1,i2,i3),(j1,j2,j3) =





p(N − i3)λ, j1 = i1, j2 = i2, j3 = i3 + 1,

i1 = 0, i2 = S0, i3 ∈ V N−1
0 ,

p(N − (i3 + 1))λ, j1 = i1, j2 = i2, j3 = i3 + 1,

i1 = 0, i2 ∈ V 2J
1 , i3 ∈ V N−2

0 ,
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µi2 , j1 = i1, j2 = S0, j3 = i3,

i1 = 0, i2 ∈ V J
1 i3 ∈ V N−1

0 ,

αi2 , j1 = i1, j2 = i2 + J, j3 = i3,

i1 = 0, i2 ∈ V J
1 , i3 ∈ V N−1

0 ,

ηi2 , j1 = i1, j2 = i2 − J, j3 = i3,

i1 = 0, i2 ∈ V 2J
J+1, i3 ∈ V N−1

0 ,

−h1, j1 = i1, j2 = i2, j3 = i3,
i1 = 0, i2 = S0, i3 ∈ V N

0 ,

−h2, j1 = i1, j2 = i2, j3 = i3,

i1 = 0, i2 ∈ V J
1 , i3 ∈ V N−1

0 ,

−h3, j1 = i1, j2 = i2, j3 = i3,

i1 = 0, i2 ∈ V 2J
J+1, i3 ∈ V N−1

0 ,

0, otherwise.

where h1 = (p(N − i3)λδ̄i3N +β), h2 = (p(N − (i3 + 1))λδ̄i3(N−1) +β+ (αk +µk)δi2k), h3 =
(p(N − (i3 + 1))λδ̄i3(N−1) + β + η(k − J)δi2k).

For i1 ∈ V S
1 , k ∈ V 2J

1

ci1 (i1,i2,i3),(j1,j2,j3) =





(N − i3)λ, j1 = i1, j2 = S1, j3 = i3 + 1,

i1 ∈ V S
1 , i2 = S0, i3 ∈ V N−1

0 ,

p(N − (i3 + 1))λ, j1 = i1, j2 = i2, j3 = i3 + 1,

i1 ∈ V S
1 , i2 = S1, S2, i2 ∈ V 2J

1 , i3 ∈ V N−2
0 ,

i3θ, j1 = i1, j2 = S1, j3 = i3 − 1,
i1 ∈ V S

1 , i2 = S0, i3 ∈ V N
1 ,

α0, j1 = i1, j2 = S2, j3 = i3,

i1 ∈ V S
1 , i2 = S1 i3 ∈ V N−1

0 ,

η0, j1 = i1, j2 = S1, j3 = i3,

i1 ∈ V S
1 , i2 = S2, i3 ∈ V N−1

0 ,

µi2 , j1 = i1, j2 = S0, j3 = i3,

i1 ∈ V S
1 , i2 ∈ V J

1 , i3 ∈ V N−1
0 ,
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αi2 , j1 = i1, j2 = i2 + J, j3 = i3,

i1 ∈ V S
1 , i2 ∈ V J

1 , i3 ∈ V N−1
0 ,

ηi2 , j1 = i1, j2 = i2 − J, j3 = i3,

i1 ∈ V S
1 , i2 ∈ V 2J

J+1, i3 ∈ V N−1
0 ,

−k1, j1 = i1, j2 = i2, j3 = i3,
i1 ∈ V S

1 , i2 = S0, i3 ∈ V N
0 ,

−k2, j1 = i1, j2 = i2, j3 = i3,

∈ V S
1 , i2 = S1, S2, i3 ∈ V N−1

0 ,

−k3, j1 = i1, j2 = i2, j3 = i3,

∈ V S
1 , i2 ∈ V J

1 , i3 ∈ V N−1
0 ,

−k4, j1 = i1, j2 = i2, j3 = i3,

∈ V S
1 , i2 ∈ V 2J

J+1, i3 ∈ V N−1
0 ,

0, otherwise.

where k1 = ((N − i3)λδ̄i3N + i1γ + H(s − i1)β + i3θ), k2 = (p(N − (i3 + 1))λδ̄i3(N−1) +
H(s− i1)β + (i1 − 1)γ + (α0 + µ0)δi2S1 + δi2S2η0), k3 = (p(N − (i3 + 1))λδ̄i3(N−1) +H(s−
i1)β+ i1γ+ (αk +µk)δi2k), k4 = (p(N − (i3 + 1))λδ̄i3(N−1) +H(s− i1)β+ i1γ+ η(k−J)δi2k).

A recursive algorithm is now derived for the solutions of the steady-state equations (3.6)
and (3.7). The steady state probability vector Π(i1), i1 ∈ V S

0 can be determined from an
algorithm given by the following steps.

Step 1. To obtain the value of ΠQ, the following system of equations is described:

ΠQ

[{
(−1)Q

s−1∑
j=0

[(
s+1−j

Ω
k=Q

DkC
−1
k−1

)
AC−1S−j

(
Q+2

Ω
l=S−j

DlC
−1
l−1

)]}
DQ+1

+CQ +

{
(−1)Q

1
Ω

j=Q
DjC

−1
j−1

}
A

]
= 0,

and

ΠQ

[
Q−1∑
i1=0

(
(−1)Q−i1

i1+1
Ω

j=Q
DjC

−1
j−1

)
+ I

+
S∑

i1=Q+1

(
(−1)2Q−i1+1

S−i1∑
j=0

[(
s+1−j

Ω
k=Q

DkC
−1
k−1

)
AC−1S−j

(
i1+1
Ω

l=S−j
DlC

−1
l−1

)])]
e = 1.

Step 2. Next, the following values are computed by
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Ωi1 = (−1)Q−i1ΠQ
i1+1
Ω

j=Q
DjC

−1
j−1, i1 = Q− 1, Q− 2, . . . , 0

= (−1)2Q−i1+1ΠQ
S−i1∑
j=0

[(
s+1−j

Ω
k=Q

DkC
−1
k−1

)
AC−1S−j

(
i1+1
Ω

l=S−j
DlC

−1
l−1

)]
,

i1 = S, S − 1, . . . , Q+ 1
= I, i1 = Q.

Step 3. By Π(Q) and Ωi1 , i1 = 0, 1, . . . , S, get the value of Π(i1), i1 = 0, 1, . . . , S. Explic-
itly,

Π(i1) = Π(Q)Ωi1 , i1 = 0, 1, . . . , S.

4 Waiting time analysis of an orbital customer

In this section, the waiting time distribution of an orbital customer is discussed that
is specified as the time between the arrival times of the customer and moment upon
which he/she gets service. This continuous time random variable is symbolized as W .
The objective is to calculate the probability distribution of W and to calculate nth order
moments of W . If the arriving customer finds the system in state (i1, S0, i3), i1 ∈ V S

1 , i3 ∈
V N−1
0 , he/she gets the service immediately. Therefore, W = 0. The probability for the

customer does not wait is denoted by P{W = 0} and is given by,

P{W = 0} =

S∑

i1=1

N−1∑

i3=0

π(i1,S0,0).

To obtain the distribution of W , some auxiliary variables are defined. Assume that the
system is in the state (i1, i2, i3), i3 > 0 at an arbitrary time t. Let W ∗(y) = E[e−yW ] be
the Laplace-Stieltjes transform of the unconditional waiting time and let W ∗(i1,i2,i3)(y) =

E[e−yW(i1,i2,i3) ] be the Laplace-Stieltjes transform of the conditional waiting time. Thus,

W ∗(y) =

S∑

i1=1

N−1∑

i3=0

π(i1,S0,i3) +

N−1∑

i3=0

π(0,S0,i3)W ∗(0,S0,i3+1)(y) +
S∑

i1=1

N−2∑

i3=0

π(i1,S1,i3)W ∗(i1,S1,i3+1)(y)

+

S∑

i1=1

N−2∑

i3=0

π(i1,S2,i3)W ∗(i1,S2,i3+1)(y) +

S∑

i1=0

2J∑

i2=1

N−2∑

i3=0

π(i1,i2,i3)W ∗(i1,i2,i3+1)(y).

(8)

To derive W ∗(i1,i2,i3), an auxiliary Markov chain is introduced on the state space

E∗ = {∗} ∪ {0, i2 = S0, 0 ≤ i3 ≤ N} ∪
{1 ≤ i1 ≤ S, i2 = S1, S2, 0 ≤ i3 ≤ N − 1} ∪
{0 ≤ i1 ≤ S, 1 ≤ i2 ≤ 2J, 0 ≤ i3 ≤ N − 1},
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where {∗} represents an absorbing state. The chain is on a state (i1, i2, i3), a first-step
argument is applied in the auxiliary chain to resolve W ∗(i1,i2,i3)(y). Then (see [14], Theo-

rem 6.21) the functions W ∗(i1,i2,i3)(y), (i1, i2, i3) ∈ E∗ are the least non-negative solution
to the system.

For 0 ≤ i1 ≤ S, i2 = S0, 1 ≤ i3 ≤ N,

w1W
∗
(i1,i2,i3)

(y) = p(N − i3)λδ̄i3Nδi10W ∗(i1,S0,i3+1)(y) + (N − i3)λδ̄i3N δ̄i10W ∗(i1,S1,i3)
(y) (9)

+i1γδ̄i10W
∗
(i1−1,S0,i3)

(y) + βH(s− i1)W ∗(i1+Q,S0,i3)
(y) + i3θδ̄i10W

∗
(i1,S1,i3−1)(y)

where

w1 = y + p(N − i3)λδ̄i3Nδi10 + (N − i3)λδ̄i3N δ̄i10 + i1γδ̄i10 + βH(s− i1) + i3θδ̄i10.

For 1 ≤ i1 ≤ S, i2 = S1, S2 1 ≤ i3 ≤ N − 1

w2W
∗
(i1,i2,i3)

(y) = p(N − (i3 + 1))λδ̄i3(N−1)W
∗
(i1,i2,i3+1)(y) + δ̄i11(i1 − 1)γW ∗(i1−1,i2,i3)(y)(10)

+βH(s− i1)W ∗(i1+Q,i2,i3)
(y) + δi2S1α0W

∗
(i1,S2,i3)

(y) + δi2S2η0W
∗
(i1,S1,i3)

(y)

+
J∑

k=1

(δi2S1rkµ0)W
∗
(i1−1,k,i3)(y)

where

w2 = y + p(N − (i3 + 1))λδ̄i3(N−1) + δ̄i11(i1 − 1)γ + βH(s− i1) + δi2S1α0

+δi2S2η0 +
J∑

k=1

(δi2S1rkµ0).

For 0 ≤ i1 ≤ S, 1 ≤ i2 ≤ J, 1 ≤ i3 ≤ N − 1,

w3W
∗
(i1,i2,i3)

(y) = p(N − (i3 + 1))λδ̄i3(N−1)W
∗
(i1,i2,i3+1)(y) + δ̄i10i1γW

∗
(i1−1,i2,i3)(y) (11)

+βH(s− i1)W ∗(i1+Q,i2,i3)
(y) +

J∑

k=1

(δi2kµk)W ∗(i1,S0,i3)
(y) +

J∑

k=1

(δi2kαk)W ∗(i1,k,i3)(y)

where

w3 = y + p(N − (i3 + 1))λδ̄i3(N−1) + δ̄i10i1γ + βH(s− i1) +
J∑

k=1

(δi2kµk) +
J∑

k=1

(δi2kαk).

For 0 ≤ i1 ≤ S, J + 1 ≤ i2 ≤ 2J, 1 ≤ i3 ≤ N − 1,

w4W
∗
(i1,i2,i3)

(y) = p(N − (i3 + 1))λδ̄i3(N−1)W
∗
(i1,i2,i3+1)(y) + δ̄i10i1γW

∗
(i1−1,i2,i3)(y) (12)

+βH(s− i1)W ∗(i1+Q,i2,i3)
(y) +

J∑

k=1

(δi2(J+k)ηk)W ∗(i1,k,i3)(y)
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where

w4 = y + p(N − (i3 + 1))λδ̄i3(N−1) + δ̄i10i1γ + βH(s− i1) +
J∑

k=1

(δi2(J+k)ηk).

The system of linear equations can be utilized to obtain a recursive algorithm for calculat-
ing the moments for the waiting times. By differentiating the system of linear equations
(4.2)–(4.5) a total of (n+ 1) times and evaluating at y = 0, the following is obtained.

For 0 ≤ i1 ≤ S, i2 = S0, 1 ≤ i3 ≤ N,

w5E
[
W

(n+1)
(i1,i2,i3)

]
− p(N − i3)λδ̄i3Nδi10E

[
W

(n+1)
(i1,S0,i3+1)

]
− (N − i3)λδ̄i3N δ̄i10E

[
W

(n+1)
(i1,S1,i3)

]

−i1γδ̄i10E
[
W

(n+1)
(i1−1,S0,i3)

]
− βH(s− i1)E

[
W

(n+1)
(i1+Q,S0,i3)

]
− (i3 − 1)θδ̄i10E

[
W

(n+1)
(i1,S1,i3−1)

]

= (n+ 1)E
[
W

(n)
(i1,i2,i3)

]
(13)

where

w5 = p(N − i3)λδ̄i3Nδi10 + (N − i3)λδ̄i3N δ̄i10 + i1γδ̄i10 + βH(s− i1) + i3θδ̄i10.

For 1 ≤ i1 ≤ S, i2 = S1, S2, 1 ≤ i3 ≤ N − 1,

w6E
[
W

(n+1)
(i1,i2,i3)

]
− p(N − (i3 + 1))λδ̄i3(N−1)E

[
W

(n+1)
(i1,i2,i3+1)

]
− δ̄i11(i1 − 1)γE

[
W

(n+1)
(i1−1,i2,i3)

]

−βH(s− i1)E
[
W

(n+1)
(i1+Q,i2,i3)

]
− δi2S1α0E

[
W

(n+1)
(i1,S2,i3)

]
− δi2S2η0E

[
W

(n+1)
(i1,S1,i3)

]

−
J∑

k=1

(δi2S1rkµ0)E
[
W

(n+1)
(i1−1,k,i3)

]
= (n+ 1)E

[
W

(n)
(i1,i2,i3)

]
(14)

where

w6 = p(N − (i3 + 1))λδ̄i3(N−1) + δ̄i11(i1 − 1)γ + βH(s− i1) + δi2S1α0

+δi2S2η0 +
J∑

k=1

(δi2S1rkµ0).

For 0 ≤ i1 ≤ S, 1 ≤ i2 ≤ J, 1 ≤ i3 ≤ N − 1,

w7E
[
W

(n+1)
(i1,i2,i3)

]
− p(N − (i3 + 1))λδ̄i3(N−1)E

[
W

(n+1)
(i1,i2,i3+1)

]
− δ̄i10i1γE

[
W

(n+1)
(i1−1,i2,i3)

]

−βH(s− i1)E
[
W

(n+1)
(i1+Q,i2,i3)

]
−

J∑

k=1

(δi2kµk)E
[
W

(n+1)
(i1,S0,i3)

]
−

J∑

k=1

(δi2kαk)E
[
W

(n+1)
(i1,k,i3)

]

= (n+ 1)E
[
W

(n)
(i1,i2,i3)

]
(15)

where

w7 = p(N − (i3 + 1))λδ̄i3(N−1) + δ̄i10i1γ + βH(s− i1) +
J∑

k=1

(δi2kµk) +
J∑

k=1

(δi2kαk).
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For 0 ≤ i1 ≤ S, J + 1 ≤ i2 ≤ 2J, 1 ≤ i3 ≤ N − 1,

w8E
[
W

(n+1)
(i1,i2,i3)

]
− p(N − (i3 + 1))λδ̄i3(N−1)E

[
W

(n+1)
(i1,i2,i3+1)

]
− i1γδ̄i10E

[
W

(n+1)
(i1−1,i2,i3)

]

−βH(s− i1)E
[
W

(n+1)
(i1+Q,i2,i3)

]
−

J∑

k=1

(δi2(J+k)ηk)E
[
(1)W

(n+1)
(i1,k,i3)

]
= (n+ 1)E

[
W

(n)
(i1,i2,i3)

]
(16)

where

w8 = p(N − (i3 + 1))λδ̄i3(N−1) + δ̄i10i1γ + βH(s− i1) +

J∑

k=1

(δi2(J+k)ηk).

Using the linear equations (4.6)–(4.9), the unknowns E
[
W

(n+1)
(i1,i2,i3)

]
, (i1, i2, i3) ∈ E can

be determined in terms of one order less. Since E
[
W

(n)
(i1,i2,i3,)

]
= 1, when n = 0. The

moments can be obtained up to a required order in a recursive way.
That is, for n ≥ 0,

E[W (n)] = δ0n +

[
N−1∑

13=0

φ(0,S0,i3)E
[
W

(n)
(0,S0,i3+1)

]
+

S∑

i1=1

N−2∑

i3=0

φ(i1,S1,i3+1)E
[
W

(n)
(i1,S1,i3+1)

]
(17)

+
S∑

i1=1

N−2∑

i3=0

φ(i1,S2,i3)E
[
W

(n)
(i1,S2,i3+1)

]
+

S∑

i1=0

2J∑

i2=1

N−2∑

i3=0

φ(i1,i2,i3)E
[
W

(n)
(i1,i2,i3+1)

]]
(1− δ0n),

which provides the nth moments of the unconditional waiting time in terms of conditional
moments of the same order.

5 System performance measures

In this section, some measures of system performance are derived in the steady state.
Using this, the total expected cost rate is calculated.

5.1 Average on-hand inventory level

Let ηI denote the average on-hand inventory level in the steady state. Then

ηI =

S∑

i1=1

i1Π
(i1)e.

5.2 Mean reorder rate

Let ηR denote the mean reorder rate in the steady state. A reorder is placed when the
inventory level drops from s+ 1 to s. This may occur in the following cases:
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• The server completes the essential service of a customer,

• any one of the (s+ 1) items fails when the server is idle,

• any one of the s items fails either when the server is busy with FES or when the
server is on interruption during FES providing,

• any one of the (s + 1) items fails either when the server is busy with Type k (1 ≤
k ≤ J) service or when server is on interruption during Type k service providing.

Hence,

ηR =
N−1∑

i3=0

{(
J∑

k=0

rkµ0) + sγ}π(s+1,S1,i3) +
N∑

i3=0

(s+ 1)γπ(s+1,S0,i3)

+

N−1∑

i3=0

sγπ(s+1,S2,i3) +

2J∑

i2=1

N−1∑

i3=0

(s+ 1)γπ(s+1,i2,i3).

5.3 Mean perishable rate

Let ηP denote the mean perishable rate in the steady state. Then

ηP =
S∑

i1=1

N∑

i3=0

i1γπ
(i1,S0,i3) +

S∑

i1=1

2∑

i=1

N−1∑

i3=0

(i1 − 1)γπ(i1,Si,i3)

+

S∑

i1=1

2J∑

i2=1

N−1∑

i3=0

i1γπ
(i1,i2,i3).

5.4 Average number of customers in the orbit

Let ηCO denote the average number of customers in the steady state. Then

ηCO =
S∑

i1=0

N∑

i3=1

i3π
(i1,S0,i3) +

S∑

i1=1

2∑

i=1

N−1∑

i3=1

i3π
(i1,Si,i3) +

S∑

i1=0

2J∑

i2=1

N−1∑

i3=1

i3π
(i1,i2,i3).

5.5 Average number of customers lost to the system

Let ηCL denote the average number of customers lost to the system in the steady state.
Then

ηCL =

N−1∑

i3=0

(1− p)(N − i3)λπ(0,S0,i3) +

S∑

i1=1

2∑

i=1

N−2∑

i3=0

(1− p)(N − (i3 + 1))λπ(i1,Si,i3) +

S∑

i1=0

2J∑

i2=1

N−2∑

i3=0

(1− p)(N − (i3 + 1))λπ(i1,i2,i3).
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5.6 Effective interruption rate

Let ηINTR denote the effective interruption rate in the steady state. Then

ηINTR =
S∑

i1=1

N−1∑

i3=0

α0π
(i1,S1,i3) +

S∑

i1=0

J∑

i2=1

N−1∑

i3=0

αi2π
(i1,i2,i3).

5.7 Effective repair rate

Let ηRI denote the effective repair rate in the steady state. Then

ηRI =
S∑

i1=1

N−1∑

i3=0

η0π
(i1,S2,i3) +

S∑

i1=0

2J∑

i2=J+1

N−1∑

i3=0

η(i2−J)π
(i1,i2,i3).

5.8 The overall retrial rate

Let ηOR denote the overall rate of retrials in the steady state. Then

ηOR =

S∑

i1=0

N∑

i3=1

i3θπ
(i1,S0,i3) +

S∑

i1=1

2∑

i=1

N−1∑

i3=1

i3θπ
(i1,Si,i3) +

S∑

i1=0

2J∑

i2=1

N−1∑

i3=1

i3θπ
(i1,i2,i3).

5.9 The successful retrial rate

Let ηSR denote the successful retrial rate in the steady state. Then

ηSR =
S∑

i1=1

N∑

i3=1

i3θπ
(i1,S0,i3).

5.10 The fraction of successful rate of retrial

Let ηFR denote the fraction of successful retrial rate in the steady state. Then

ηFR =
ηSR
ηOR

.

5.11 The probability that the server and system are idle

Let ηPSI denote the probability that server and system are idle is given by

ηPSI =
S∑

i1=0

π(i1,S0,0).

5.12 The probability that the server is idle, but the system is not empty

Let ηPSNI denote the probability that server is idle and system is not empty is given by

ηPSNI =

S∑

i1=0

N∑

i3=1

π(i1,S0,i3).
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5.13 Probability that the server is busy (FES or SOS)

Let ηPSB denote the probability that server is busy is given by

ηPSB =
S∑

i1=1

N−1∑

i3=0

π(i1,S1,i3) +
S∑

i1=0

J∑

i2=1

N−1∑

i3=0

π(i1,i2,i3).

5.14 Probability that the server is under repair

Let ηPOR denote the probability that server is under repair is given by

ηPOR =

S∑

i1=1

N−1∑

i3=0

π(i1,S2,i3) +

S∑

i1=0

2J∑

i2=J+1

N−1∑

i3=0

π(i1,i2,i3).

5.15 The effective rate at which arriving customers are lost on seeing
an interrupted server

Let ηPOR denote the effective rate at which arriving customers are lost on seeing an
interrupted server is given by

ηLI =
S∑

i1=1

N−2∑

i3=0

(1− p)(N − (i3 + 1))λπ(i1,S2,i3) +
S∑

i1=0

2J∑

i2=J+1

N−2∑

i3=0

(1− p)(N −

(i3 + 1))λπ(i1,i2,i3).

5.16 The effective rate at which arriving customers are lost when finding
the inventory level as zero

Let ηIL denote the effective rate at which arriving customers are lost when finding the
inventory level as zero is given by

ηIL =
N−1∑

i3=0

(1− p)(N − i3)λπ(0,S0,i3).

6 Cost analysis and sensitivity investigation

The expected total cost function per unit time is developed, wherein three decision vari-
ables S, s and N are considered. The objective is to find the optimum value of S, s and N ,
simultaneously so that the cost function is minimized. First, the following cost elements
are defined: The expected total cost per unit time (expected total cost rate) in the steady
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state for this model is defined so that

ch is the inventory carrying cost per unit item per unit time,

cs is the setup cost per order,

cp is the perishable cost per unit item per unit time,

cw is the waiting time cost of a customer in the orbit per unit time,

ci is the cost per interruption per unit time,

cr is the cost per repair per unit time,

cl is the shortage cost of a customer per unit time.

Using cost values ch, cs, cp, cw, ci, cr and cl and the concept of crew-service equipment by
White et al. [21], the total cost function TC(S, s,N, J) per unit time in the steady state
for this model is given by

TC(S, s,N, J) = chηI + csηR + cpηP + cwηCO + ciηINTR + crηPI + clηCL.

More clearly, TC(S, s,N, J) =

cs

N−1∑

i3=0

{(
J∑

k=0

rkµ0) + sγ}φ(s+1,S1,i3) + cs

N∑

i3=0

(s+ 1)γφ(s+1,S0,i3) + cs

N−1∑

i3=0

sγφ(s+1,S2,i3) +

cs

2J∑

i2=1

N−1∑

i3=0

(s+ 1)γφ(s+1,i2,i3) + ch

S∑

i1=1

i1φ
(i1)e + cp

S∑

i1=1

N∑

i3=0

i1γφ
(i1,S0,i3) +

cp

S∑

i1=1

2∑

i=1

N−1∑

i3=0

(i1 − 1)γφ(i1,Si,i3) + cp

S∑

i1=1

2J∑

i2=1

N−1∑

i3=0

i1γφ
(i1,i2,i3) + cw

S∑

i1=0

N∑

i3=1

i3φ
(i1,S0,i3) +

cw

S∑

i1=1

2∑

i=1

N−1∑

i3=1

i3φ
(i1,Si,i3) + cw

S∑

i1=0

2J∑

i2=1

N−1∑

i3=1

i3φ
(i1,i2,i3) + ci

S∑

i1=1

N−1∑

i3=0

α0φ
(i1,S1,i3) +

ci

S∑

i1=0

J∑

i2=1

N−1∑

i3=0

αi2φ
(i1,i2,i3) + cr

S∑

i1=1

N−1∑

i3=0

η0φ
(i1,S2,i3) + cr

S∑

i1=0

2J∑

i2=J+1

N−1∑

i3=0

η(i2−J)φ
(i1,i2,i3) +

cl

N−1∑

i3=0

(1− p)(N − i3)λφ(0,S0,i3) + cl

S∑

i1=1

2∑

i=1

N−2∑

i3=0

(1− p)(N − i3)λφ(i1,Si,i3) +

cl

S∑

i1=0

2J∑

i2=1

N−2∑

i3=0

(1− p)(N − i3)λφ(i1,i2,i3).

A sensitivity investigation is given by considering the following parameters and cost values:
λ = 0.04, β = 5, γ = 4, θ = 3, µ0 = 8, µ1 = 0.17, µ2 = 0.06, µ3 = 16, α0 = 0.05, α1 =
0.08, α2 = 0.5, α3 = 0.7, η0 = 4, η1 = 11, η2 = 6, η3 = 0.06, r0 = 0.25, r1 =
0.25, r2 = 0.25, r3 = 0.25, ch = 0.35, cs = 3, cp = 0.3, cw = 2, cl = 5, ci = 4, cr = 12.
The performance of the expected total cost function is investigated by allowing for any
two variables to change, while fixing others at a constant level. Figure 2 reveals the 3-
dimensional plot of TC(S, s). In Tables 1–3, show the cost function of TC(S, s, 10, 3),



Retrial queueing-inventory with J-additional options for service and finite source 123

Figure 2: A three-dimensional plot of the cost function.

TC(50, s,N, 3) and TC(S, 6, N, 3) by fixed parameters and cost values as constant. After
getting the Local Optima (LO) S∗, s∗ and N∗, the sensitivity investigation is carried out
to observe how the changes in S, s and N affect the cost function. In Tables 1–3, the
values displayed in bold is the smallest value amongst the values in that row and likewise
the values that are underlined is the smallest value amongst the values in that column.
Therefore, a value (bold and underlined) shows a local minimum of TC. More clearly,
varying S and s, the optimal values are S∗ = 30, s∗ = 6 and TC∗ = 20.213022; varying s
and N , the optimal values are s∗ = 8, N∗ = 14 and TC∗ = 9.264222; varying S and N ,
the optimal values are S∗ = 34, N∗ = 12 and TC∗ = 7.821037.

Next, a numerical illustration is performed to the optimal values (S∗, s∗ and TC∗) based
on changes in particular cost values. The numerical results are presented by considering
the different cost values of ch, cs, cp, cw, cl, ci and cr. The following are observed from
Tables 4–10.

1. The optimal cost increases, when cs, ch, cp, cl, ci, cr and cw increase. The optimal
cost is more sensitive to cw than to cs, ch, cp, ci, cr and cl.

2. As ch increases, as expected, the optimal values s∗ and S∗ decrease monotonically.
This is expected since the holding cost increases, low stock is maintained in the
inventory.

3. When cl and cw increase, the optimal values s∗ and S∗ increase monotonically. This
is because if the waiting cost and shortage cost of a customer increase then high
inventory is maintained to reduce the number of waiting (lost) customers.

4. If the setup cost cs increases, it is a common decision that more stock has to be
maintained to avoid frequent ordering. This fact is also observed in the model.

5. It is noted that, if ci and cr increase, the optimal values of s∗ and S∗ increase
monotonically and when the perishable cost cp increases, s∗ and S∗ decrease mono-
tonically.
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Figure 3: λ vs β on TC

Now, the impact of the parameter values λ, γ, β, θ, µ0 µ1, µ2 and µ3 on the total expected
cost rate are looked at. From Figures 3–8, the following is observed:

1. The optimal expected cost rate increases when λ and γ increase.

2. The optimal expected cost rate decreases when β, µ0, µ1, µ2, µ3 and θ increase.

The numerical illustrations are obtained by considering different service cases as follows:

Case 1: r0 = 0.25, r1 = 0.25, r2 = 0.25, r3 = 0.25;

Case 2: r0 = 0.4, r1 = 0.2, r2 = 0.2, r3 = 0.2;

Case 3: r0 = 0.2, r1 = 0.4, r2 = 0.2, r3 = 0.2;

Case 4: r0 = 0.2, r1 = 0.2, r2 = 0.4, r3 = 0.2;

Case 5: r0 = 0.2, r1 = 0.2, r2 = 0.2, r3 = 0.4;

Case 6: r0 = 1, r1 = 0, r2 = 0, r3 = 0;

Case 7: r0 = 0.5, r1 = 0.5, r2 = 0, r3 = 0.

Now, the impact of parameter values λ, β, θ and different service cases (Cases 1–7) on
TC are looked at. From Figures 9–11, the following is observed:

1. From Figures 9 and 10:

TCclass 4 > TCclass 1 > TCclass 3 > TCclass 2 > TCclass 5 > TCclass 7 > TCclass 6.

2. From Figure 11:

TCclass 4 > TCclass 1 > TCclass 2 > TCclass 3 > TCclass 5 > TCclass 7 > TCclass 6.
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s 4 5 6 7 8
S

28 20.238179 20.214607 20.214144 20.228737 20.254321

29 20.237064 20.213788 20.213090 20.226990 20.251429

30 20.236783 20.213858 20.213022 20.226369 20.249854

31 20.237253 20.214724 20.213832 20.226743 20.249435

32 20.238399 20.216305 20.215426 20.228002 20.250036

Table 1: Total expected cost rate as a function of S and s

s 6 7 8 9 10
N

12 9.475022 9.375660 9.264644 9.344231 9.356036

13 9.474643 9.375323 9.264346 9.343971 9.355811

14 9.474447 9.375164 9.264222 9.343879 9.355750

15 9.474402 9.375149 9.264237 9.343923 9.355822

16 9.474479 9.375255 9.264369 9.344080 9.356003

Table 2: Total expected cost rate as a function of s and N

N 10 11 12 13 14
S

32 7.900699 7.847420 7.827450 7.834535 7.869472

33 7.882873 7.836107 7.822051 7.834425 7.868038

34 7.870182 7.829554 7.821037 7.838337 7.866280

35 7.862038 7.827200 7.823878 7.845770 7.877730

63 7.877938 7.828566 7.830121 7.856304 7.891997

Table 3: Total expected cost rate as a function of S and N
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Figure 4: β vs µ0 on TC

cs 1.5 2 2.5 3 3.5
ch
0.25 50 6 56 6 59 5 62 4 65 4

21.365796 21.534480 21.690773 21.837029 21.968881

0.30 47 6 51 6 56 5 60 4 63 4
21.378759 21.546029 21.701847 21.847088 21.978081

0.35 45 5 48 5 51 5 56 4 60 4
21.391656 21.557579 21.712886 21.857099 21.988377

0.40 40 5 44 5 48 4 51 3 56 3
21.404441 21.569125 21.723925 21.867110 21.998115

0.45 36 4 40 4 44 4 48 3 52 3
21.417227 21.580540 21.734964 21.877121 22.007852

Table 4: Variation in optimal values for different values of ch and cs with cp = 0.3, cw =
2, cl = 5, ci = 4, cr = 12.

cp 0.1 0.2 0.3 0.4 0.5
ch
0.25 50 6 48 5 45 5 40 4 35 3

21.365796 22.257257 22.919692 23.487756 23.988367

0.30 47 6 46 5 40 5 36 4 33 3
21.378759 22.273638 22.937827 23.508647 24.007861

0.35 45 5 40 4 35 4 32 4 30 3
21.391656 22.289913 22.955962 22.528934 24.027356

0.40 40 5 36 4 30 4 27 3 24 3
21.404441 22.306188 22.973757 23.549029 24.046851

0.45 36 4 30 4 24 4 20 3 18 3
21.417227 22.321962 22.991351 23.569123 24.066346

Table 5: Variation in optimal values for different values of ch and cp with cs = 3, cw =
2, cl = 5, ci = 4, cr = 12.
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Figure 5: β vs γ on TC.

Figure 6: β vs θ on TC.
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Figure 7: β vs µ1, µ2, µ3 on TC.

Figure 8: β vs µ1, µ2, µ3 on TC.
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Figure 9: β vs service cases on TC.

Figure 10: β vs service cases on TC.
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Figure 11: β vs service cases on TC.

Figure 12: β vs µ0, µ1, µ2 and µ3 on ηCO.
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Figure 13: N vs α0, α1, α2, α3 on ηCO.

Figure 14: N vs η0, η1, η2, η3 on ηCO.
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cw 2 3 4 5 6
ch
0.25 50 6 54 6 55 7 56 8 57 8

21.365796 30.361160 39.356524 48.351888 57.347252

0.30 47 6 50 6 52 7 53 7 54 7
21.378759 30.374123 39.369487 48.364851 57.360215

0.35 45 5 48 5 50 6 51 6 53 7
21.391656 30.387039 39.382423 48.377807 57.373178

0.40 40 5 45 5 48 5 49 6 50 6
21.404441 30.399825 39.395209 48.390593 57.385976

0.45 36 4 40 4 45 5 49 5 50 6
21.417227 30.412611 39.407995 48.403379 57.398762

Table 6: Variation in optimal values for different values of ch and cw with cs = 3, cp =
0.3, cl = 5, ci = 4, cr = 12.

cp 0.1 0.2 0.3 0.4 0.5
cs
1.5 50 6 48 5 45 5 40 4 35 3

21.365796 22.257257 22.919692 23.487756 23.988367

2 54 4 52 4 48 4 45 3 40 3
21.534480 22.457181 23.164813 23.738541 24.235497

2.5 57 4 55 4 52 3 50 3 47 2
21.690773 22.642965 23.371365 23.953040 24.471896

3 60 3 57 3 55 3 52 2 50 2
21.837029 22.821527 23.554849 24.159996 24.699138

3.5 63 3 60 3 59 3 57 2 53 2
21.968881 22.993137 23.733211 24.360297 24.918487

Table 7: Variation in optimal values for different values of cs and cp with ch = 0.35, cw =
2, cl = 5, ci = 4, cr = 12.

cw 2 3 4 5 6
cs

1.5 50 6 54 6 55 7 56 8 57 8
21.365796 30.361160 39.356524 48.351888 57.347252

2 54 4 54 5 55 6 56 7 57 8
21.534480 30.529822 39.525163 48.520505 57.515847

2.5 57 4 57 5 58 6 60 6 62 7
21.690773 30.686169 39.681566 48.676963 57.672359

3 60 3 60 4 62 5 64 5 65 4
21.837029 30.832368 39.827707 48.823046 57.818385

3.5 63 3 64 3 65 4 66 4 67 4
21.968881 30.964270 39.959660 48.955049 57.950439

Table 8: Variation in optimal values for different values of cs and cw with ch = 0.35, cp =
0.3, cl = 5, ci = 4, cr = 12.
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cl 5 6 7 8 9
cs
1.5 42 5 47 6 50 6 52 7 55 8

21.273175 21.319551 21.365796 21.412040 21.458179

2 45 4 50 4 54 4 58 6 60 7
21.441252 21.487907 21.534480 21.580947 21.627414

2.5 49 4 53 4 57 4 60 5 64 6
21.598933 21.644853 21.690773 21.736552 21.782295

3 54 3 59 3 60 3 64 4 69 5
21.744041 21.790535 21.837029 21.883401 21.929725

3.5 58 3 61 3 63 3 66 3 72 4
21.876897 21.922889 21.968881 22.014732 22.060561

Table 9: Variation in optimal values for different values of cs and cl with ch = 0.35, cp =
0.3, cw = 2, ci = 4, cr = 12.

cr 3 4 5 6 7
ci

10 42 5 44 6 45 6 46 6 47 7
21.205227 21.365796 21.522320 21.678341 21.833571

12 45 6 46 6 47 6 48 7 49 7
21.347984 21.504086 21.659696 21.810874 21.959569

14 53 6 54 7 55 7 56 7 57 7
21.485517 21.639196 21.787930 21.936342 22.084391

16 55 7 56 7 56 7 57 7 58 8
21.616291 21.764736 21.912784 22.060517 22.203573

18 56 7 57 7 58 8 59 8 60 8
21.741181 21.888943 22.033663 22.176304 22.318753

Table 10: Variation in optimal values for different values of cr and ci with ch = 0.35, cs =
3, cp = 0.3, cw = 2, cl = 5.

Finally, the impact of the parameters λ, β, µ0, µ1, µ2, µ3, η0, η1, η2, η3, α0, α1, α2, α3

and N on the expected number of customers in orbit ηCO are studied. The following is
observed from Figures 12–14.

1. If β, µi and ηi, i = 0, 1, 2, 3 increase, then the expected number of customers in the
orbit ηCO decreases.

2. When N and αi, i = 0, 1, 2, 3, increase, then ηCO increases.

7 Conclusion

In this paper, a continuous review stochastic inventory system with J additional options
for service, server interruptions, returning customers and finite populations were analyzed.
The stationary distribution of the number of customers in the orbit and the inventory level
is obtained by matrix method. Various system performance measures are derived and the
long-run total expected cost rate is calculated and also the Laplace-Stieltjes transform of
the waiting time of the orbiting customer is derived. By assuming a suitable cost structure
on the inventory system, extensive numerical illustrations were presented to show the effect
of change of values for constants on the total expected cost rate.
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