
Volume 33 (1), pp. 1–20

http://orion.journals.ac.za

ORiON
ISSN 0259–191X (print)
ISSN 2224–0004 (online)

©2017

New reinforcement learning
algorithm for robot soccer

M Yoon* J Bekker� S Kroon�

Received: 22 June 2015; Revised: 14 October 2015; Accepted: 1 February 2016

Abstract
Reinforcement Learning (RL) is a powerful technique to develop intelligent agents in the field
of Artificial Intelligence (AI). This paper proposes a new RL algorithm called the Temporal-
Difference value iteration algorithm with state-value functions and presents applications of
this algorithm to the decision-making problems challenged in the RoboCup Small Size League
(SSL) domain. Six scenarios were defined to develop shooting skills for an SSL soccer robot in
various situations using the proposed algorithm. Furthermore, an Artificial Neural Network
(ANN) model, namely Multi-Layer Perceptron (MLP) was used as a function approximator
in each application. The experimental results showed that the proposed RL algorithm had
effectively trained the RL agent to acquire good shooting skills. The RL agent showed good
performance under specified experimental conditions.

Key words: Reinforcement learning, multi-layer perceptron, neural network, machine learning,

RoboCup, robot soccer.

1 Introduction

Operations research (OR) applies a large suite of methods to improve decision-making,
including mathematical modelling, heuristics and artificial intelligence (AI). Various AI
techniques such as reinforcement learning, neural networks, decision trees and support
vector machines are employed in the context of OR [4, 6, 7, 31]. Aiming to develop
“intelligent agents” [18], AI is widely used in real-world applications including speech
recognition, image processing, machine translation, game playing, automation, medical
diagnosis, robotics and many more.

The victory of a computer, Deep Blue, over the human chess world champion in 1997 was
probably the most outstanding achievement of AI at the time. It was not only a great

*Department of Industrial Engineering, University of Stellenbosch, South Africa
�Corresponding author: Department of Industrial Engineering, University of Stellenbosch, South Africa,

email: jb2@sun.ac.za
�CSIR-SU Centre for AI Research, Computer Science Division, Stellenbosch University, South Africa

http://dx.doi.org/10.5784/33-1-542

1

http://orion.journals.ac.za
jb2@sun.ac.za
http://dx.doi.org/10.5784/33-1-542

2 M Yoon, J Bekker & S Kroon

breakthrough but also became a turning point of mainstream AI research. The focus then
shifted to more complicated problems, that is, developing intelligent agents working in
dynamic, uncertain environments.

RoboCup [23], an annual international robot soccer competition, is one such attempt
to promote AI. Aiming at developing a team of fully autonomous soccer-playing robots,
teams participating in RoboCup competitions are challenged to incorporate various tech-
nologies such as design principles of autonomous agents, computer vision, hardware design
and control, real-time reasoning, strategy acquisition, robotics and multi-agent collabora-
tion [32]. There are several leagues in RoboCup, namely the Small Size League (SSL), the
Middle Size League (MSL), the Simulation League, the Standard Platform League and
the Humanoid League [23]. The focus in this paper is on the SSL.

An AI method, reinforcement learning (RL), is widely used to solve real-world prob-
lems. Examples of RL applications to real-world problems are filtering personalised web-
documents [35], steering an automobile [22], controlling power systems [34], solving job-
shop scheduling tasks [9], autonomously flying artistic maneuvers with a helicopter [2, 15],
operational space control [17], and implementing real-time strategy games [1].

In robot soccer domains, RL is applied to learn hardware controls such as walking patterns
for humanoid robots [5, 16] and ball trapping for four-legged robots [13]. It is also applied
to learning individual soccer skills and team-level strategies. Examples of learning individ-
ual soccer skills include kicking patterns [20], shooting skills [8], dribbling [21], aggressive
defence behaviours [21] and scoring penalty goals [11]. Stone’s KeepAway task [29] is a
good example of an RL application to develop team-level naive attacking strategies. The
work inspired other researchers to develop more agressive attacking strategies based on
reinforcement learning [12, 14].

In this paper, reinforcement learning was used for an SSL soccer robot. In particular, a
new RL algorithm was proposed for infinite Markov Decision Process (MDP) problems
with the dynamics of the environment known, and applied to develop shooting skills under
various scenarios. The purpose of this paper is to show that the proposed RL algorithm
can equip an SSL soccer robot with the mentioned shooting skills, thus allowing the soccer
robot to make better decisions during a match. This is, to the best of our knowledge, the
first application of RL in the RoboCup SSL domain.

The rest of the paper is organised as follows: In the following section, reinforcement
learning methods are discussed and the new RL algorithm is introduced. A brief overview
of the RoboCup SSL architecture is provided in the next section, followed by descriptions of
the scenarios and the design of the RL experiments. The results of the RL experiments are
discussed next, and the last section contains concluding remarks and mentions possibilities
for future work.

2 Reinforcement learning background

A reinforcement learning agent tries to learn its behaviour policy to achieve a specific
goal through repeated interactions with the environment. At each time-step the RL agent
observes the current state (an environmental situation in which the agent finds itself),

New reinforcement learning algorithm for robot soccer 3

takes an action (from a set of actions allowed in that state) and receives a reward (or
cost) accordingly. The environment is transitioned to a new state at the next time-step
as a result of the action taken by the agent. A sequence of these steps or interactions
between the agent and the environment that has a natural end is called an episode.

2.1 Reinforcement learning

Reinforcement learning problems are normally formulated as Markov Decison Processes
(MDP) [19]. That is, the transition probability from a state s to the next state s′ depends
only on the current state s and the chosen action a, regardless of the states that the agent
passed through to reach the current state s. In a finite-MDP, where the state and action
variables are finite, the dynamics of the environment are defined by the following two
functions. Let

Pass′ be the probability of a possible next state s′ given a state s and an action a and
Rass′ be the expected value of the reward given any current state and action, s and a,

along with any next state, s′.
These functions are given by

Pass′ = P (st+1 = s′ | st = s, at = a), and

Rass′ = E(rt+1 | st = s, at = a, st+1 = s′),

where st and at denote the state and action at time-step t, respectively, and rt+1 represents
the reward given to the agent at time-step t. If an RL problem is formulated as a finite-
MDP and Pass′ and Rass′ are known for all s ∈ S (S denotes the set of possible states), then
it is called a model-based problem.

The goal of the RL agent is to obtain the optimal policy, i.e. to learn how to choose the
best action in a state to fulfil the task given to the agent. To do this, RL algorithms employ
the notion of value functions, which represent the value of each state or the value of each
state and action pair. Typically the value of state s is denoted by V (s) and the function
V is called the state-value function. Similarly, the value of a state-action pair is denoted
by Q(s, a) and Q is called the action-value function. If Rt represents the sum of rewards
the RL agent receives after time-step t and rt+1 is the reward given to the RL agent as a
result of its action at time-step t, then V π(s), the value of a state s under a policy π, is
defined as

V π(s) = Eπ{Rt | st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}
, (1)

where Eπ{·} denotes the expected value given that the agent follows policy π. The symbol
γ is used in equation (1) for a discount rate to determine the present value of future
rewards (0 ≤ γ ≤ 1). Thus V π(s) represents the value of a state s based on the expected
sum of future rewards, assuming the RL agent starts from that state and follows policy π.

Bertsekas & Tsitsiklis [3] showed that for each MDP there exists an optimal policy π∗

that satisfies, for any policy π, V π∗(s) ≥ V π(s) for all states. All RL algorithms seek

4 M Yoon, J Bekker & S Kroon

to estimate the true value of V π∗(s) or Qπ
∗
(s, a) through repeated interactions with the

environment. The RL agent starts with random values of V (s) or Q(s, a). As it explores
through the state space and receives rewards, it updates the estimated value function
according to the experience.

One important feature of value functions is that they satisfy a recursive relationship known
as the Bellman equation, defined by

V π(s) = Eπ{Rt | st = s}

= Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2 | st = s

}
= Eπ {rt+1 + γV π(st+1) | st = s}

=
∑
a

π(s, a)
∑
s′

Pass′

[
Rass′ + γEπ

{ ∞∑
k=0

γkrt+k+2 | st+1 = s′

}]
=

∑
a

π(s, a)
∑
s′

Pass′
[
Rass′ + γV π(s′)

]
. (2)

Here π(s, a) denotes the probability of choosing action a in state s under the policy π.
The Bellman equation shows the relationship between the value of a state s and the values
of all possible following states of s. This particular property of value functions is used
throughout RL algorithms in the estimation of the value function.

Value iteration (Algorithm 1) is an important RL algorithm to estimate V π∗(s) for model-
based problems. It uses the expected sum of future rewards over all possible next states
(
∑

s′ Pass′ [Rass′ + γV π(s′)]) in estimating the value of state s (see Line 6 in Algorithm 1),
but with the maximum value, not the expected value as seen in equation (2), over possible
actions. The symbol π(s) in Line 9 denotes the action to be taken in state s under the
policy π.

Algorithm 1: The value iteration algorithm [30].

1 Initialise V (s) arbitrarily, for all s ∈ S;
2 repeat
3 ∆← 0;
4 for each s ∈ S do
5 v← V (s);
6 V (s)← max

a

∑
s′ P

a
ss′ [Ra

ss′ + γV (s′)];

7 ∆← max(∆, |v− V (s)|);

8 until ∆ < δ (a small positive number);
9 Output a deterministic policy π such that π(s) = arg max

a

∑
s′ P

a
ss′ [Ra

ss′ + γV (s′)];

For model-free problems, where the dynamics of the environment are not known, the
Temporal-Difference (TD) algorithm (Algorithm 2) is typically used to estimate V π(s) for
a given policy π. The TD algorithm does not go through all possible states as the value

New reinforcement learning algorithm for robot soccer 5

Algorithm 2: The TD algorithm for estimating V π [30].

1 Initialise V (s) arbitrarily, π to the policy to be evaluated;
2 forall episodes do
3 Initialise s;
4 repeat (for each step of episode)
5 a← given by π for s;
6 Take action a, observe reward r, and the next state s′;
7 V (s)← V (s) + η[r + γ V (s′)− V (s)];
8 s← s′;

9 until s is a terminal state;

iteration algorithm does, but it goes through episodes, updating the estimation of the value
of states which the agent meets in the episode. As the dynamics of the environment are
not known in model-free problems, it is impossible for the algorithm to use the expected
sum of future rewards over all possible next states as the estimate of the value of the state.
Instead it uses the value r + γV (s′), which was just learned from the experience, as the
target value for the estimation of the state. However, the target value v = r + γV (s′) is
not fully assigned to V (s) because it is not the expected sum of future rewards. The value
of the state is updated towards the target v from where it is (V (s)) by adding a portion
of the difference between the target and the current value (η[r + γ V (s′) − V (s)]) (refer
to Line 7 in Algorithm 2). This is called the Temporal-Difference algorithm because it
uses the difference between the target value and the current value of the state s, but the
difference is only temporarily effective, that is, only in that iteration where r and s′ were
observed.

Though effective, Algorithm 2 does not provide value functions for an optimal policy π∗.
It only provides the estimation of V π(s), the value of states for a given policy π. To obtain
an optimal policy from this model, a process called “policy iteration” is required. Further
information on policy iteration can be found in Sutton & Barto [30, pp.113–125].

Q-learning [33], shown in Algorithm 3, is often used to find an optimal policy for model-
free problems. It is essentially a TD value iteration algorithm for model-free problems
that uses action-value functions. It goes through episodes and updates the value of the
current state-action pair Q(s, a) based on the information it has just experienced, as in
the TD algorithm. The adopted TD target q = r + γmax

a′
Q(s′, a′) is the maximum value

over possible actions as in the value iteration algorithm, which makes it possible for the
algorithm to search for an optimal policy π∗.

The three algorithms introduced in this section (Algorithm 1, 2 and 3) are popular RL
algorithms. Algorithm 1 is for problems modelled as finite-MDPs when the dynamics of the
environment are known. Algorithms 2 and 3 are for both finite- and infinite-MDP problems
when the dynamics of the environment are not known. There exist problems, though not
common, that are modelled as infinite-MDPs when the dynamics of the environment are
known. A novel RL algorithm called the Temporal-Difference value iteration algorithm
with state-value functions is proposed in this paper for such problems. Algorithm 4 shows
the pseudo-code of this algorithm.

The value iteration algorithm (Algorithm 1) can be used for this kind of problem by dis-

6 M Yoon, J Bekker & S Kroon

cretising the continuous state space. However, it does not seem as effective as Algorithm 4
because the value iteration algorithm exhaustively visits all states including states that
the agent is not likely to visit. In contrast, in Algorithm 4 the RL agent explores the state
space in episodes and updates only the values of the visited states.

Infinite-MDP problems with the dynamics of the environment known can also be dealt
with using the Q-learning algorithm (Algorithm 3), which uses action-value functions.
Using action-value functions instead of state-value functions requires more resources. In
addition, it will take more time to estimate optimal values Qπ

∗
(s, a) for all state-action

pairs than to estimate V π∗(s) for all states. When the dynamics of the environment are not
known, Q-learning is a good option. However, when the dynamics of the environment are
known, then the optimal policy can be obtained by greedily exploiting V π∗(s) according
to

π∗(s) = arg max
a

∑
s′

Pass′ [Rass′ + γV π∗(s′)].

Therefore Algorithm 4 can be used effectively for problems modelled as infinite-MDPs
when the dynamics of the environment are known, which are the cases dealt with in the
RL experiments discussed in later sections. In general, the proposed algorithm can be
applied to all RL problems in this category (infinite-MDPs with the known dynamics of
the environment).

2.2 Function approximation

Thus far, it was assumed that the value functions V (s) or Q(s, a) are represented as a
lookup table storing a value for each state s or for each state-action pair (s, a). For RL
problems with a large number of states, or with continuous state variables, value functions
need to be represented approximately by a set of parameters z, as follows:

V (s) = [F (z)](s),

Q(s, a) = [F (z)](s, a).

The problem of estimating V (s) or Q(s, a) is now changed to the problem of searching for
the parameter vector z that represents V (s) or Q(s, a) as accurately as possible. This is
called function approximation.

Algorithm 3: The Q-learning algorithm [30].

1 Initialise Q(s, a) arbitrarily;
2 forall episodes do
3 Initialise s;
4 repeat (for each step of episode)
5 Choose a from s using policy derived from Q (e.g. ε-greedy);
6 Take action a, observe reward r, and the next state s′;
7 Q(s, a)← Q(s, a) + η[r + γmax

a′
Q(s′, a′)−Q(s, a)];

8 s← s′;

9 until s is a terminal state;

New reinforcement learning algorithm for robot soccer 7

Algorithm 4: The TD value iteration algorithm with state-value functions.

1 State Initialise V (s) arbitrarily;
2 forall episodes do
3 Initialise s;
4 repeat (for each step of episode)
5 v← max

a

∑
s′ P

a
ss′ [Ra

ss′ + γV (s′)];

6 V (s)← V (s) + η[v− V (s)];
7 a← arg max

a

∑
s′ P

a
ss′ [Ra

ss′ + γV (s′)] with ε-greedy;

8 Take action a and observe the next state s′;
9 s← s′;

10 until s is a terminal state;

x1

xm

y1

yn

Hidden

layer 1

Hidden

layer 2

Input

layer

Output

layer

Figure 1: A multi-layer perceptron model. It is assumed that the multi-layer perceptron
has two hidden layers with m inputs and n outputs. The number of neurons in the hidden
layers are not specified in this figure.

Function approximation is an instance of supervised learning, which is to learn a mapping
from inputs to outputs based on a training data set so that the mapping provides the
output correctly for any input that is not included in the training data set. The Multi-
Layer Perceptron (MLP), a popular supervised learning model, was employed in this
research to approximate the value functions.

The MLP is an artificial neural network model that has inputs, outputs and a number of
neurons arrayed in different layers between inputs and outputs. Figure 1 shows an example
of an MLP. Each connection (denoted by an arrow in Figure 1) between the inputs, outputs
and neurons has a weight. An MLP model learns the mapping by adjusting the weights
according to the training examples provided. An algorithm called back-propagation (BP),
proposed by Rumelhart et al. [25], is typically used in updating the weights of the MLP.
The algorithm starts with random initial weights and at each iteration the weights are
adjusted to minimise the error between the target value of the input, which is provided in
the training data set, and the actual response of the network for the given input. More
information on the BP algorithm can be found in Haykin [10, pp.161–173].

8 M Yoon, J Bekker & S Kroon

When an MLP is used as a function approximator for RL problems, the batch mode BP
algorithm is known to be more efficient than the sequential mode [21]. In the sequential
mode of the BP algorithm, the weights are updated every time each example in the
training set is fed to the network. The batch mode BP algorithm, on the other hand,
accumulates the errors and makes the update once after all examples in a training data
set are presented.

Algorithm 5 shows the pseudo-code of the TD value iteration algorithm with state-value
functions (Algorithm 4) combined with an MLP as a function approximator. Therefore,
the value V (s′) in Lines 6 and 8 is the output of the MLP when the state s′ is given as an
input. The TD target v and the current input s form a training example. These training
examples in the training set T are used in the batch mode BP algorithm once the episode
finishes (see Line 12 in Algorithm 5). Algorithm 5 is used in all the experiments discussed
in later sections.

Algorithm 5: The TD value iteration with MLP (batch mode).

1 Initialise z arbitrarily;
2 forall episodes do
3 Initialise the training data set T = ∅;
4 Initialise s;
5 repeat (for each step of episode)
6 v← max

a

∑
s′ P

a
ss′ [Ra

ss′ + γV (s′)];

7 T← T ∪ {(s, v)};
8 a← arg max

a

∑
s′ P

a
ss′ [Ra

ss′ + γV (s′)] with ε-greedy;

9 Take action a and observe the next state s′;
10 s← s′;

11 until s is a terminal state;
12 Update z using the batch mode BP algorithm with training data set T;

3 The RoboCup SSL

A brief overview of the RoboCup SSL is presented to explain the context of the research.
In the RoboCup SSL, teams consisting of maximum six robots play soccer games using an
orange golf ball on a pitch of 6 050 × 4 050 mm. The robots’ shape and size are confined
to a cylinder with a diameter of 180 mm and a height of 150 mm. Figure 2(a) shows an
example of the hardware design of a typical SSL robot. The robot has four omnidirectional
wheels (Figure 2(b)) and a kicker unit. The omnidirectional wheels have numerous small
wheels all around the circumference. These small wheels rotate freely, enabling the robot
to move in any direction without having to turn. This feature had a significant effect on
the design of the RL experiments discussed in later sections.

The SSL control process is as follows: activities on the field are captured by two cameras
mounted above the field and the corresponding information, such as the positions of robots
and the ball, is processed by open-source software called SSL-Vision [28] on an off-field
computer. Using this information, an independent computerised decision-making module
(DMM) produces team strategies for the robot’s actions and sends commands to the

New reinforcement learning algorithm for robot soccer 9

(a) CAD design of the SSL robot showing the lo-
cation of the omnidirectional wheels.

(b) Omnidirectional wheel with many
small wheels on its circumference.

Figure 2: Hardware design of an SSL robot [26].

Figure 3: A schematic representation of the RoboCup SSL system [24].

robots in a team via a wireless radio link. Changes on the field caused by movements of
the robots and the ball are again captured by the cameras and the processes described
above are repeated throughout the game. This control loop iterates approximately 60 times
per second. Figure 3 shows the basic elements of the RoboCup SSL system.

The SSL control system described above is centralised. The robots perceive their environ-
ment via the cameras and not as individuals, and the DMM makes decisions for all the
robots in the team; they are thus under the control of the DMM of their team. Designing
and implementing an intelligent DMM is therefore one of the major challenges for teams
in the RoboCup SSL.

One of the most important features in the design of the DMM is that it is built in a layered
architecture with different levels of abstraction. In a layered architecture, individual soccer
skills such as Shoot, Pass, Intercept, etc. are developed first, then these skills are used
to implement high-level team strategies such as AgressiveAttack or Defence. Figure 4

10 M Yoon, J Bekker & S Kroon

DMM

TS1 TS2 TSn

IS
IS

IS

IS
IS

IS

IS
IS

IS

Figure 4: A layered architecture of a DMM. The DMM consists of n team strategies (TS1,
. . ., TSn) and each team strategy has multiple individual soccer skills (IS).

shows an example of a layered architecture of a DMM.

In general, individual skills and high-level team strategies are programmed based on human
knowledge and experience, and are then fine-tuned manually. But no matter how fine-
tuned they are, these hand-coded skills and strategies are error prone for it is almost
impossible to account for all potential game situations by human logic [8]. Also, the hand-
coded, human-driven solutions are not guaranteed to be optimal because humans, even
experts, are likely to be biased.

Various OR techniques have been applied to improve existing hand-coded skills and strate-
gies in robot soccer. These techniques include linear programming, reinforcement learning,
evolutionary algorithms, neural networks and case-based reasoning. Of these, reinforce-
ment learning is particularly widely used in robot soccer domains because its specific
settings for problem-solving are well suited to the learning tasks of autonomous robots in
a highly dynamic and complex environment such as robot soccer. The next two sections
describe one of these attempts: RL applications to the developement of shooting skills for
an SSL soccer robot.

4 Experimental design

To verify the ability of the proposed algorithm in the robot soccer domain, several ex-
periments were conducted. The purpose of the RL experiments was to develop shooting
skills for an individual soccer robot, in various scenarios. The scenarios were defined based
on the settings of the experiments such as whether the ball is stationary or moving, or
whether there is a goalkeeper or not. When a goalkeeper is assumed, the scenarios were
refined according to the behaviour of the goalkeeper. The following tasks were given to
the RL agent in each experiment to acquire the basic shooting skills (we refer to the soccer
robot as the RL agent):

� Experiment 1: Shooting a stationary ball assuming no goalkeeper.

� Experiment 2: Shooting a moving ball assuming no goalkeeper.

� Experiment 3: Shooting a stationary ball against a confined goalkeeper.

New reinforcement learning algorithm for robot soccer 11

� Experiment 4: Shooting a stationary ball against a smarter goalkeeper.

� Experiment 5: Shooting a moving ball against a confined goalkeeper.

� Experiment 6: Shooting a moving ball against a smarter goalkeeper.

The behaviour of the confined goalkeeper is as follows: The goalkeeper is initially located
at a random position on the goal line between the two goal posts. It waits at its initial
position until the ball is kicked. Once the goalkeeper detects that the ball is kicked, it
tries to block the ball by moving on the goal line. The goalkeeper is not allowed to move
forward off the goal line.

A smarter goalkeeper can move off the goal line before the ball is kicked as long as it
remains in the defence area. The goalkeeper comes forward as soon as the episode starts,
to minimise the open angle for shooting, i.e. the angle between the goalkeeper and either
side of the goal posts. It moves towards the point on the border of the defence area where
the line connecting the ball and the centre of the goal intersects (see Figure 5(a); the
target position is marked with an arrow.) If the goalkeeper reaches the target position
before the ball is kicked, it waits there until the ball is kicked because the goalkeeper is
not allowed to move outside the defence area. When the goalkeeper detects that the ball
is kicked, whether it has reached the target position or not, it tries to block the ball by
moving from its current position to the closest point on the path of the ball. Figure 5(b)
shows the new target position of the goalkeeper in both cases.

(a) Target position of the goalkeeper when
the episode starts.

(b) Target position of the goalkeeper when
it detects that the ball has been kicked.

Figure 5: Target position of the smarter goalkeeper.

Three state variables are used for the experiments dealing with a stationary ball: 1) the
distance D between the ball and the RL agent, 2) the angle α between the orientation of
the RL agent and the line connecting the ball and the target, and 3) the angle β between
the line connecting the robot and the ball, and the line connecting the ball and the target.
These variables are from Duan et al. [8]. The geometric relations of the objects in the
field and the state variables are illustrated in Figure 6. It is assumed that the target is
the centre of the opponents’ goal box in this figure. Four additional state variables were
used for experiments dealing with a moving ball: vbx and vby, the velocity of the ball in
x- and y-direction respectively, and vx and vy, the velocity of the RL agent in x- and

12 M Yoon, J Bekker & S Kroon

Figure 6: Schematic (not to scale) showing the soccer robot on the playing field and the
associated state variables for a given orientation and distance from the ball. A goalkeeper
is also present.

y-direction respectively. Note that the state variables are continuous, thus making the
problems infinite-MDPs.

Three action variables were considered to form an action space: moving direction of the
robot, θ (in rad), its moving speed v (in m/s) and its angular velocity ω (in rad/s). These
three action variables are used for all experiments, but the number of actions used is
different in each experiment. As the skills in later experiments are more complex and
harder to achieve, more refined control of actions is required, which led to the difference
in the number of actions in each experiment.

Thirty-six moving directions (evenly distributed between 0 and 2π) were used in Experi-
ments 1 and 2. The number of moving directions was extended to 72 in Experiments 4–6.
For the moving speed, the value v = 0.5 or v = 1 m/s was used for Experiment 1, and
v = 0.5, v = 1 or v = 2 m/s for the remaining experiments. Nine different values were
used for the angular velocity. They are{

−2π,−π,−1
2π,−

1
4π, 0,

1
4π,

1
2π, π, 2π

}
for the first two experiments and{

−π,−1
2π,−

1
4π,−

1
8π, 0,

1
8π,

1
4π,

1
2π, π

}
for the remaining experiments.

By virtue of its omnidirectional wheels, the RL agent can move from one position to
another without first having to turn to face the target. Therefore an action is defined by
the combination of the three action variables. In addition, nine more actions are possible
when the RL agent does not move but only turns at a certain angular velocity, including
when ω = 0. This special case is considered as the kick action. A constant kicking
force of 50 N was assumed. Table 1 summarises the total number of actions used in each
experiment.

New reinforcement learning algorithm for robot soccer 13

Number of Number of Number of Total number of
Experiments

values in Θ values in V values in Ω actions

1 36 2 9 36× 2× 9 + 9 = 657
2 36 3 9 36× 3× 9 + 9 = 981

3 to 6 72 3 9 72× 3× 9 + 9 = 1 953

Table 1: Number of values in action sets and the total number of possible actions for each
experiment. The action sets Θ, V and Ω contain possible values of moving direction θ,
moving speed v and angular velocity ω, respectively.

A cost-based method was used for the reward system, as was done in the work of Riedmiller
et al. [21]. In a cost-based method, the RL agent is given a cost ct+1, instead of a reward
rt+1, as a result of an action at at a state st, and the task is to minimise the overall cost
in the long run. The cost function c(s, a, s′), the cost given to the agent when it chooses
an action a at a state s and the following state is s′, is defined as

c(s, a, s′) =

0.00 if s′ ∈ S+,
1.00 if s′ ∈ S−,
0.01 else,

(3)

where S+ and S− denote the set of terminal states with success and failure, respectively.
Punishing the agent with a small constant cost 0.01 in all non-terminal states encourages
the agent to achieve the goal as soon as possible. The costs for terminal states were
determined as such because the output of the MLP is in the range of [0, 1] due to the
activation function used in the BP algorithm (refer to Haykin [10, pp.12–15] for more
information on the activation function).

All experiments were conducted in a simulation environment with the length of time-step
50 ms. An open-source library called Open Dynamics Engine (ODE, Smith [27]), was
incorporated in the simulator to calculate the next state (caused by the chosen action)
based on the motion dynamics of the robot and the ball. Algorithm 5 was used in all
experiments. Each episode was initialised with random positions of the ball, the RL agent
and the goalkeeper where applicable.

5 Results and discussion

To show the performance of the RL agent after each learning episode, a learning curve
was drawn for each experiment. Figure 7 shows the learning curves of all six experiments.
The performance was measured from the results of five tests that were conducted after
each learning episode, but the graph was smoothed by using a moving average over the
last 100 tests.

As can be seen in Figure 7, the learning was very effective for the first two experiments.
After about 30–35 episodes, the RL agent consistently succeeded in scoring a goal with
a success rate of approximately 99% and 96% respectively. The small fraction of failure
cases was not because of the inefficiency in learning, but due to the initial set-up of the
episode. It was observed, for example, that in all failure cases in Experiment 1, the ball

14 M Yoon, J Bekker & S Kroon

0 50 100 150 200 250 300 350 400

0

20

40

60

80

100

Number of learning episodes

S
u
cc

es
s

ra
te

(%
)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Figure 7: Result: shooting a stationary ball with no goalkeeper present.

was placed too close to the goal line and therefore the shooting angle from the position was
too small (see Figure 8). Figure 9 shows an example of the failure cases in Experiment 2
where the ball is placed relatively close to the goal box while the initial position of the RL
agent is far from the ball. This gives insufficient time for the RL agent to approach the
ball. This case clearly shows that the possibility of scoring with this initial set-up is very
low.

In Experiments 3 and 4, the RL agent tries to learn to shoot a stationary ball against a
confined and a smarter goalkeeper. Figure 7 shows that the RL agent reached a success rate
of approximately 76% and 52% in Experiments 3 and 4, respectively. Most of the failure
cases were found again in episodes where the initial positions of the ball and the goalkeeper
were determined such that the scoring was impossible in the first place. However, the
RL agent failed sometimes in an episode with a seemingly good chance. An intensive
investigation of these cases showed that the failure occured when the RL agent could not
aim at the target as accurately as necessary due to the discrete action variables. With the
action scheme described in the previous section, the minimum angular velocity of the RL
agent is ±π

8 rad/s. As the time-step in the simulator was set to 50 ms, the RL agent was
able to aim at the target position only with an accuracy of π

160 = π
8 ×

1
20 rad. This causes

a difference between the ideal orientation and the actual orientation of the learning agent
at the final position before shooting. In most cases, the difference was not problematic.
In some cases, however, the difference became significant especially when the ball was
positioned far from the goal box and thus aiming accuracy was more important.

In Experiments 5 and 6, where the RL agent plays with a moving ball against a confined
and a smarter goalkeeper, the success rate reached approximately 40% and 20%, respec-
tively. Besides the usual failure cases due to the initial set-up of the episodes, failures
were also caused by the momentum of the moving ball (See Figure 10). The RL agent
did not suffer with this problem in Experiment 2, where it also had to deal with a moving
ball but without a goalkeeper. In Experiment 5, however, the RL agent had to aim at

New reinforcement learning algorithm for robot soccer 15

Figure 8: The initial position of the ball in 500 test episodes for Experiment 1. Failure
cases are indicated with arrows.

Figure 9: The trajectory of the RL agent and the ball in a failure case in Experiment 2.

16 M Yoon, J Bekker & S Kroon

Figure 10: The difference between the target direction and the moving direction of the
ball after being kicked. The arrow labelled ‘A’ shows the original moving direction of the
ball, while the arrow labelled ‘B’ shows the target direction. Arrow ‘C’ shows the moving
direction of the ball after being kicked.

the corner of the goal box (rather than at the center of the goal box as in Experiment 2)
to play against a goalkeeper, which posed the problem of the momentum of the moving
ball. Interestingly, the same problem was not an issue in Experiment 6, where most of
the failures were due to the competence of the goalkeeper. Figure 11 presents an example
of the behaviour of the goalkeeper with the trajectory of the moving ball, showing the
competence of the goalkeeper.

6 Summary and conclusion

In this research, reinforcement learning (RL) was applied to develop basic soccer skills for
soccer robots playing in the RoboCup Small Size League. The Temporal-Difference value
iteration algorithm with state-value functions was proposed to exploit the knowledge of the
dynamics of the environment with an infinite-MDP model. The Multi-Layer Perceptron
was employed in the RL algorithm as a function approximator to deal with the continuous
state variables.

Six RL experiments were performed to develop shooting skills in various scenarios. Table 2
presents a summary of all the experiments done along with the success rate achieved
(rounded up) and the number of learning episodes required to reach the performance.

It was found that the RL agent failed in cases when either the initial set-up of the episode
(such as the initial position of the ball and of the RL agent) made it very difficult to
achieve the given task, or when the RL agent could not aim at the target as accurately as
required due to the discrete nature of the action variables in the experiments dealing with
a stationary ball.

New reinforcement learning algorithm for robot soccer 17

Figure 11: The behaviour of the goalkeeper in Experiment 6. The one-sided arrows indicate
the moving direction of the ball and the goalkeeper, respectively. The two-sided arrows
with dashed lines show the corresponding positions of the ball and the goalkeeper at the
same time-step.

Experiment 1 2 3 4 5 6

Stationary ball a a a
Moving ball a a a
Goalkeeper (confined) a a
Goalkeeper (smarter) a a
Success rate (%) 99 96 76 52 40 20
Number of episodes 35 30 65 40 30 35

Table 2: A summary of the experiments.

In the experiments involving a moving ball, failures occurred due to the difference be-
tween the target direction and the actual moving direction of the ball after being kicked.
However, in these cases too, the RL agent was able to score a goal in episodes where the
difference in question did not have a significant impact. Therefore, it can be concluded
that the RL agent was able to score a goal whenever circumstances allowed.

It is also concluded that reinforcement learning using the proposed Temporal-Difference
value iteration algorithm with state-value functions effectively trained the RL agent to
acquire shooting skills in various situations. The proposed algorithm was applied to robot
soccer, but it can be applied to general RL problems with infinite-MDPs and known
dynamics of the environment. A comparison study of the performance of Algorithm 4 and
other RL algorithms (Algorithm 1 and 3) would be interesting for a future study.

For a better performance of currently developed shooting skills, a new experiment can be

18 M Yoon, J Bekker & S Kroon

designed for the RL agent to handle a moving ball more precisely, i.e. to account for the
momentum of the moving ball. This would require a new state variable indicating the
angular difference between the moving direction of the ball (Arrow ‘A’ in Figure 10) and
the target direction (Arrow ‘B’ in Figure 10).

Acknowledgement

The authors thank the South African Council for Scientific and Industrial Research (CSIR)
for providing funding for the research.

References
[1] Andersen KT, Zeng Y, Christensen DD & Tran D, 2009, Experiments with online reinforcement

learning in real-time strategy games, Applied Artificial Intelligence, 23(9), pp. 855–871.

[2] Bagnell JA & Schneider JG, 2001, Autonomous helicopter control using reinforcement learning
policy search methods, Proceedings of the IEEE International Conference on Robotics and Automa-
tion, 2(1), pp. 1615–1620.

[3] Bertsekas DP & Tsitsiklis JN, 1995, Neuro-dynamic programming: an overview, Proceedings of
the 34th IEEE Conference in Decision and Control, 1(1), pp. 560–564.

[4] Boyacioglu MA, Kara Y & Baykan ÖK, 2009, Predicting bank financial failures using neural
networks, support vector machines and multivariate statistical methods: A comparative analysis in
the sample of savings deposit insurance fund (SDIF) transferred banks in turkey, Expert Systems
with Applications, 36(2), pp. 3355–3366.

[5] Budden DM, 2012, Applications of machine learning techniques to humanoid robot platforms, Doc-
toral Dissertation, University of Newcastle, Australia.

[6] Dias J, Rocha H, Ferreira B & do Carmo Lopes M, 2014, A genetic algorithm with neural
network fitness function evaluation for IMRT beam angle optimization, Central European Journal of
Operations Research, 22(3), pp. 431–455.

[7] Dorigo M & Gambardella L, 2014, Ant-Q: A reinforcement learning approach to the traveling
salesman problem, Proceedings of the ML-95, Twelfth Intern. Conf. on Machine Learning, pp. 252–
260.

[8] Duan Y, Liu Q & Xu X, 2007, Application of reinforcement learning in robot soccer, Engineering
Applications of Artificial Intelligence, 20(7), pp. 936–950.

[9] Gabel T & Riedmiller M, 2008, Adaptive reactive job-shop scheduling with reinforcement learning
agents, International Journal of Information Technology and Intelligent Computing, 24(4).

[10] Haykin S, 2009, Neural Networks and Learning Machines, 3rd ed., Prentice Hall, Upper Saddle River
(NJ).

[11] Hester T, Quinlan M & Stone P, 2010, Generalized model learning for reinforcement learning on
a humanoid robot, Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 2369–2374.

[12] Kalyanakrishnan S, Liu Y & Stone P, 2007, RoboCup 2006: Robot Soccer World Cup X, Springer,
Berlin, Germany, Available from http://dx.doi.org/10.1007/978-3-540-74024-7_7.

http://dx.doi.org/10.1007/978-3-540-74024-7_7

New reinforcement learning algorithm for robot soccer 19

[13] Kobayashi H, Osaki T, Williams E, Ishino A & Shinohara A, 2007, RoboCup 2006: Robot
Soccer World Cup X, Springer, Berlin, Germany, Available from http://dx.doi.org/10.1007/

978-3-540-74024-7_8.

[14] Neri JRF, Zatelli MR, Farias dos Santos C & Fabro JA, 2012, A proposal of Q-learning to
control the attack of a 2D robot soccer simulation team, Proceedings of the Robotics Symposium and
Latin American Robotics Symposium (SBR-LARS), pp. 174–178.

[15] Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, Berger E & Liang E, 2006,
Autonomous inverted helicopter flight via reinforcement learning, in Experimental Robotics IX. pp.
363–372, Springer, Berlin, Germany.

[16] Ogino M, Katoh Y, Aono M, Asada M & Hosoda K, 2004, Reinforcement learning of humanoid
rhythmic walking parameters based on visual information, Advanced Robotics, 18(7), pp. 677–697.

[17] Peters J & Schaal S, 2008, Learning to control in operational space, The International Journal of
Robotics Research, 27(2), pp. 197–212.

[18] Poole D, Mackworth A & Goebel R, 1998, Computational Intelligence, Oxford University Press,
Oxford, United Kingdom.

[19] Puterman ML, 2009, Markov decision processes: discrete stochastic dynamic programming, 414,
John Wiley & Sons, Hoboken (NJ).

[20] Riedmiller M & Gabel T, 2007, On experiences in a complex and competitive gaming domain:
Reinforcement learning meets RoboCup, Proceedings of the Computational Intelligence and Games,
CIG 2007, IEEE Symposium, pp. 17–23.

[21] Riedmiller M, Gabel T, Hafner R & Lange S, 2009, Reinforcement learning for robot soccer,
Autonomous Robots, 27(1), pp. 55–73.

[22] Riedmiller M, Montemerlo M & Dahlkamp H, 2007, Learning to drive a real car in 20 minutes,
Proceedings of the Frontiers in the Convergence of Bioscience and Information Technologies, FBIT
2007, pp. 645–650.

[23] RoboCup, The Robot Worldcup, [Online], [accessed on 2014-10-21], Available at: http://www.

robocup.org/.

[24] RoboCup SSL, The RoboCup Small Size League, [Online], [accessed on 2014-10-29], Available at:
http://robocupssl.cpe.ku.ac.th/.

[25] Rumelhart DE, Hintont GE & Williams RJ, 1986, Learning representations by back-propagating
errors, Nature, 323(6088), pp. 533–536.

[26] Smit DGH, 2014, Robocup Small Size League: active ball handling system, Masters Thesis, Stellen-
bosch University, Stellenbosch, South Africa.

[27] Smith R, ODE – Open Dynamics Engine, [Online], [accessed on 2014-10-29], Available at: http:

//www.ode.org/.

[28] SSL-Vision, SSL-Vision: RoboCup Small Size League Shared Vision System, [Online],
[accessed on 2015-03-24], Available at: https://code.google.com/p/ssl-vision/wiki/

RequirementsInstallation.

[29] Stone P, Sutton RS & Kuhlmann G, 2005, Reinforcement learning for RoboCup soccer keepaway,
Adaptive Behavior, 13(3), pp. 165–188.

[30] Sutton RS & Barto AG, 1998, Reinforcement learning: An introduction, MIT Press, Cambridge
(MA).

http://dx.doi.org/10.1007/978-3-540-74024-7_8
http://dx.doi.org/10.1007/978-3-540-74024-7_8
http://www.robocup.org/
http://www.robocup.org/
http://robocupssl.cpe.ku.ac.th/
http://www.ode.org/
http://www.ode.org/
https://code.google.com/p/ssl-vision/wiki/RequirementsInstallation
https://code.google.com/p/ssl-vision/wiki/RequirementsInstallation

20 M Yoon, J Bekker & S Kroon

[31] Üney-Yüksektepe F, 2014, A novel approach to cutting decision trees, Central European Journal
of Operations Research, 22(3), pp. 553–565.

[32] Visser U & Burkhard HD, 2007, RoboCup: 10 years of achievements and future challenges, AI
Magazine, 28(2), p. 115.

[33] Watkins CJCH, 1989, Learning from Delayed Rewards, Doctoral Dissertation, University of Cam-
bridge (MA).

[34] Wehenkel L, Glavic M & Ernst D, 2005, New developments in the application of automatic
learning to power system control, Proceedings of the 15th Power System Computation Conference
(PSCC 2005).

[35] Zhang BT & Seo YW, 2001, Personalized web-document filtering using reinforcement learning,
Applied Artificial Intelligence, 15(7), pp. 665–685.

