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Degeneracy may cause various computing and other complications in any mathematical 

programming problem of the kind where the constraint set defines a convex polyhedral 

set (particularly, a polytope). In order to be able to study various seemingly 

independent degeneracy phenomena from a unifying viewpoint a so-called degeneracy 

graph (DG for short) is defined, and its properties analyzed. Cycling of the simplex 

method for LP is analyzed and a method to construct cycling examples of arbitrary size 

is proposed. The neighbourhood problem is solved by a new approach to determine a 

minimal N-tree (N for neighbour), and an efficient method to determine all vertices of a 

convex polytope is described. A new version of the simplex method is indicated that 

does not need Phase 1, should be faster than commercial codes and automatically 

contains an anticycling device. For a degenerate optimal solution of an LP-problem, 

sensitivity analysis as well as shadow price determination and interpretation are tackled 

by using a special class of DG's, the so-called optimum DG's. The connection between 

weakly redundant constraints, a degenerate optimal solution of the associated LP and 

sensitivity analysis as well as shadow price determination is analyzed. 
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1. INTRODUCTION 

Degeneracy is a complex phenomenon linked to various mathematical programming 

problems of which the constraint set defines a convex polyhedral set (particularly, a 

convex polytope), such as linear programming (see, e.g., Altman {1964), Balinski et a!. 

(1986), Beale {1955), Dantzig (1963), Hoffmann {1953), Megiddo (1986), Wolfe {1963)), 

transportation (network) type of problems (see, e.g., Ahrens und Finke {1975), 

Cunningham {1979), Cunningham and Klincewicz (1981), McKeown (1978)), quadratic 

optimization (see, e.g., Chang and Cottle (1980)), linear complementarity problems (see, 

e.g., Kostreva {1979)), bottleneck linear programming (see, e.g., Derigs (1982), Garfinkel 

and Rao (1976), Hammer (1969), Seshan and Achary (1982)), multiparametric linear 

programming (see, e.g., Gal {1979)), linear vector maximization (see, e.g., Gal (1977), 

(1987), Philip (1977)), linear integer vectormaximum problems (see, e.g., Ramesh et a!, 
(1987)), nonlinear programming (see, e.g. Horst et a!. (1988)), piecewise-linear 

progran1ming (see, e.g., Fourer (1987)) etc. -for more references see Kruse (1986) and 

Zornig (1989). 

Degeneracy may cause various kinds of computing difficulties, e.g. in vertex searching 

methods (see, e.g., Altherr (1975), Dyer and Proll (1977, 1982), Mattheiss and Rubin 

(1980)), integer linear programming (see, e.g., Fleischmann {1970), Nygreen (1987), 

Young {1968)), simplex methods for linear programming because of cycling (see, e.g., 

Cameron (1987), Cirina (1985), Dantzig et a!. {1955), Hattersley and Wilson (1988), 

Kotiah and Steinberg (1977, 1978), Magnanti and Orlin (1988), Majthay (1981), Ryan 

and Osborne {1988), Teigen (1980)), in connection with the determination, definition 

and interpretation of shadow prices (see, e.g., Akgiil {1984), Aucamp and Steinberg 

{1982), Knolmayer (1976), Mlynarovic (1988), Proll {1987), Strum (1969), Williams 

(1963) - see also the survey in Gal (1986)), with sensitivity analysis (see, e.g., Evans 

and Baker (1982), Greenberg (1986), Knolmayer (1984), and the survey in Gal (1986)), 

in determining neighbouring vertices of a degenerate vertex (see, e.g. Dyer and Proll 

(1977 and 1982), Mattheis and Rubin (1980) and Kruse (1986)). 

Until now each kind of degeneracy problem has been treated separately. Therefore, an 

attempt has been made to find a unifying approach, a roof under which all the particular 

degeneracy problems can be subsumed, i.e. analyzed and discussed from a common point 

of view. This should yield a better understanding of what is behind various problems 

caused by degeneracy, and when or under which conditions various degeneracy problems 

arise. 
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With respect to convex polytopes, a vertex 

xk c X:= {x £ IR" I Ax~ b, x ~ 0} with A £ IRm x ", b £ IRm, is said to be degenerate if it is 

(geometrically) over-determined (i.e. more than n hyperplanes pass through xk). To 

such a vertex a set of bases of the corresponding enlarged matrix A = (A I Im) is assigned. 

The complex structure of a degenerate vertex or the associated set of bases can be 

studied by translating such structures into the language of graph theory. An appropriate 

degeneracy graph (DG for short) is defined, and this yields the instrument suitable for 

studying and discussing various degeneracy phenomena from a common point of view. 

After some preliminary formal remarks in Section 2.1, DG's are introduced; some of 

their main properties have already been described in Gal et al. (1988). In Section 2.2 a 

general theory of the DG's for arbitrary degeneracy degree, u, is indicated. In the 

subsequent Section 3 to 6 applications are discussed. In Section 3 the neighbourhood 

problem and the principles of a new solution approach to solve this problem are 

presented. Section 4 is a concise analysis of why and when cycling of the simplex 

method occurs. A method is also suggested to construct LP's of arbitrary size that cycle 

with the simplex method. In Section 5 a degenerate optimal solution of an LP is 

tackled, and sensitivity analysis, shadow price determination and interpretation are 

discussed in the light of the so-called optimum degeneracy graphs. In Section 6 some 

connections between weakly redundant constraints on the one hand, and degeneracy, 

shadow prices and sensitivity analysis on the other hand are analyzed. Open questions 

free for further research are mentioned. A very concise survey of the above questions has 

already been published in Gal eta!. (1986) and (1988). 

This paper does not give a general survey of degeneracy phenomena, though the 

references on the topics are quite comprehensive. The intention of this paper is rather to 

give a survey of the theoretical results of degeneracy graphs and their use for various 

applications in what we believe to be a completely new approach to tackling degeneracy 

phenomena. 
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2. THEORY OF DEGENERACY GRAPHS 

2.1 PRELIMINARY REMARKS 

Consider the system of inequalities 

(2.1) Ax~b,x~O, 

the corresponding solution set of which is 

(2.2) X:= {x dl"IAx ~ b, x ~ 0}, 

where A f IRm x n is a constant matrix, b f IRm a constant vector. Without loss of 

generality we assume throughout that X 11/J and bounded, hence X is a convex polytope 

that has at least one vertex. 

Introducing slacks s = (x0 • 1, ... , xn•m)T, the corresponding solution set is defined by 

(2.3) :X := {y f IRm•n I Ay = b, y ~ o}, 

where A = (A I Im), Im =identity matrix, y = G)· 

CASE A. ASSUME THAT THERE IS NO DEGENERACY 

To each vertex xk f X a feasible basis Bk (regular m x m submatrix of A) is uniquely 

assigned and vice versa. After appropriately rearranging indices, the tableau defined by 

(2.4) Bk-l A I Bk-!1 Bk-lb ~!~1!1~!!!'-Yi~~--~ (y ··) I(/]..) I (fJ·) IJ m , n IJ m , n J m , 1 

is uniquely assigned to Bk and likewise denoted by Bk. Any basis Bk = (ai 1 , ••• , aim), 

aii f IRm columns of A for i = 1, .•. , m, can be uniquely characterized by a so-called 

basic-index {j1 •••• , jm} also denoted by Bk. By this we have established 
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EQUIVALENCE 1 

Vertex xk f X ,____. Feasible basis Bk ,____. Basic-index Bk ,____. Tableau Bk in the 

sense that the terms vertex, basis, tableau and basic-index are interchangeable and 

synonymous. 

The structure of a convex polytope X (see (2.2)) can be characterised using the 

"Griinbaum Definition" (Griinbaum (1967}} of the graph of the polytope: G1 := G1 (X) 

:= (V1 
, E1

}, where V1 is the set of nodes defined by a one-to-one correspondence 

between the vertices of X and the nodes of G1
, while E1 is the set of edges defined by a 

one-to-one correspondence between the edges (1-faces) of X and the edges of G1
• 

Associating with each vertex xk f X the corresponding basis Bk (or: tableau Bk etc. -

see equivalence 1}, each node Bk of G1 can be uniquely associated with a basis Bk. Let 

xk, xk
1 

be two neighbouring (adjacent) vertices of X and (xk , xk
1

) the edge of X 
I I 

connecting xk with xk. Let Bk and Bk1
, be the (unique) bases associated with xk and xk 

respectively. Then, moving from xk to xk
1

(or vice versa) along the edge (xk , xk
1

) 

corresponds to a basis exchange from Bk to Bk1 (or vice versa). Because x ~ 0 in X, a 

basis exchange from Bk to Bk1 corresponds to a positive pivot-step, notation Bk ,.___.±_., 

Bk1
• Hence 

(2;5} G 1 := (V1 
, E1

} 

where 

V1 := {Bk I k = I, ... , K}, with K the number of vertices in X and 

By this we have established 
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EQUIVALENCE 2 

Vertex xk t X ,___.feasible basis, tableau, basic index Bk 

,___.node Bk of G'. 

Corresponding illustrations are to be found in Gal et al. (1988). 

CASE B. ASSUME THAT X HAS AT LEAST ONE DEGENERATE VERTEX 

Suppose that the vertex x0 t X is overdetermined, i.e. more than n hyperplanes pass 

through x0 t IR 0
• Overdetermined means degenerate (cf. also Hadley (1977), 180- 181 

and Nelson (1957)); in a corresponding simplex type tableau (cf. (2.4)) the value of at 

least one of the basic variables equals zero. Let us call the number of zero basic 

variables the degeneracy degree, a, of the vertex x0 and the vertex x0 a a- degenerate 

vertex. 

If x0 
f X is a a-degenerate vertex, then, as is very well known, several bases are 

associated with x0• Let 

(2.6) B0 := {B~ju = 1, ... , U}, U > 1, 

be the set of bases (tableaux) associated with x0• 

2.2 DEGENERACY GRAPHS AND SOME OF THEIR PROPERTIES 

In order to be able to study the structure of a degenerate vertex x0 let us introduce a 

special graph G2 (x0) which is defined as follows (Gal (1978 and 1985) and Kruse 

(1986)): 

(2.7) G2(x0) := G2 := (V, E.) 

where 

v := s0 , E.:= {{B~, sg,} c B0 1B~,......:!:..... B~.}. 

u, u' t {1, ... , U}, u I u'. 

• The graph G2 is called the positive degeneracy graph of x0 (positive DG for short). If x0 

is nondegenerate then G2 = (B0,¢>) with B0 = {B0} and U = 1. 

http://orion.journals.ac.za/



9 

EQUIVALENCE 3 

u-degenerate vertex x0 t X ~---+ set B0 of bases ~---+ Set B0 of tableaux ~---+ Set B0 

of basic indices ~---+ Set B0 of nodes 

Notice that the correspondence is no longer "one-to-one" but "one-to-many". 

In the case of degeneracy it is possible to pivot in a tableau with zero basic variables also 

on negative elements, notation Bk .......:....... Bk', of course "staying" on the same 

(geometrical) vertex. 

The corresponding DG is then called the negative degeneracy graph of x0 (negative DG 

for short), denoted by G?. 

Using lillY nonzero pivot, i.e. Bk ~---+ Bk'• the corresponding graph is called the general 

DG of x0 denoted by G0• 

The main characteristics for a DG are the degeneracy degree, u, of the u-degenerate 

vertex x0 tX h IR" and the size of n of IR". Therefore, a DG is concisely described as a 

ux n-DG. 

Let us call the representation graph, G(X), (see also Altherr (1975), Jansson (1985), 

Kruse (1986)) the graph based on G'(X) in which the corresponding positive or negative 

or general degeneracy graph G! is embedded for each degenerate vertex xi. 

Kruse (1986) studied some of the properties of a DG (the corresponding generalizations 

and proofs are therein): 

(1) The positive and the negative DG's may be disconnected; the general DG's are 

always connected (see also Jansson (1985) and ZOrnig (1989)). 

(2) If the degeneracy degree is u and if all neighbouring vertices of the given 

u-degenerate vertex x0 are nondegenerate, then there are u + 1 edges in the 

representation graph connecting any node assigned to a neighbouring vertex of x0 

with some specific nodes in G0 (or in G~ or in G?). 
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Kruse (1986) (see also Gal (1978) and (1985)) defines: 

The node-set of G0 (or G2 or G?) that connects G0 with at least one node of G(X) not in 

G0 is called the set of transition nodes. The nodes of G0 that have no connection to 

"outer" nodes are called internal nodes. 

Another question concerns the number U = I 8° I (cardinality of 8°) of nodes in G0 (in 

G2, in G?). The maximum possible number, Umax• of nodes in G0 is obviously 

and it has been proved in Kruse (1986) that the minimal number, Umin• of nodes in G0 is 

(2.10) 
a-1 

Umin = 2 (n - CT + 2), u < n. 

In order to given the reader a feeling of how many nodes a u x n-DG might have, 

compare Tab. 2.1 for some selected nand u. 

Tab_ 2.1 

n 11 umio urn ax 

5 3 16 56 
10 5 112 3003 

50 5 752 3.48·106 

50 10 ° 21504 1.62·1017 

50 40 6.59·1012 5.99·1025 

100 30 3.865·1010 2.61·1039 

100 50 2.93·1016 2.01·1040 

100 80 1.33·1025 3.1052 

Consider the u-degenerate vertex x0 t Ol 0 with the bases set 8° and let B~ t8° be a 

corresponding tableau. Rearranging the indices appropriately tableau B~ has the form of 
Tab. 2.2: 
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Tab2.2 

1 1 0 0 0 0 

IT 0 0 0 0 

IT + 1 0 0 0 

m 0 0 0 

Here (Y 8 ) and (Y m • 
8

) are the corresponding parts of the matrix (B~) ·lA_ that 
(J' q' 

are associated with the nonbasic variables. The part (Y 
11 

, 
8

) of the tableau B~ is called 

the (reduced) u x n-degeneracy tableau. 

In order to be able to derive specific properties of u x n-DG's it is necessary to find out 

what kind of graph a DG is. Zornig (1989} therefore analysed the general structure of 

DG's for arbitrary u. For the particular case, u = 2, it is possible, however, to use a 

simpler approach based on the notion of a line graph (see, e.g., Beineke and Wilson 

(1978} and ZOrnig (1989}). 

Using this theory various properties of the u x n-DG's can be derived. Formulas for 

determining the number of nodes of a u x n-DG are found (Zornig (1989)). Other 

derived properties of the u x n-DG's are: 

(1) It holds for the diameter d of a u-DG that 

d ~min {u, n}. 

(2) From (1) the assertion which has been proved in Kruse (1986} follows immediately, 

namely, that general u x n-DG's are always connected. 

(3) The connectivity of a IT x n-DG is~ 2. 

(4) From (3) it follows: Let Bk, Bk', k f. k', be two nodes of au x n-DG. Then there 

exists a closed line in the DG that includes both Bk and Bk'· 

http://orion.journals.ac.za/
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3. THE NEIGHBOURHOOD PROBLEM 

The first part of this section could be entitled "The history of DG's" because the 

problem defined below is the reason why DG's were introduced and have been dealt with 

since Gal {1978). 

Specifically, in some mathematical programming problems it is required to find all or a 

specific subset of the neighbouring vertices of a given vertex x0 f X c IRn (see 

Introduction for references). 

If x0 is nondegenerate this task is an easy one. If, however, x0 is a u-degenerate vertex 

it was previously normal to implicitly generate all the bases of the set B0 to ensure 

having found all neighbours of x0 (for the imaginable complexity cf. Table 2.1, 

Cunningham {1979) for the problem of "stalling", and Megiddo {1986) who shows that 

exiting a degenerate vertex is as hard as solving a general LP-problem; Balinski et a!. 

{1986) deal for such a case with the length of a directed path through G~ (our notation)). 

In the framework of determining all vertices of a convex polytope X, Dyer and Prall 

{1977 and 1982) proposed a method to avoid such tremendous and perhaps superfluous 

work. 

We call the prob,lem of determining all neighbouring vertices of au-degenerate vertex x0 

f X the neighbourhood oroblem (N-problem for short). Using the notion of a DG, a new 

way to solve this problem has been found. 

Let us first observe that two cases should be considered in general: 

(1) All neighbours of the u-degenerate vertex x0 are nondegenerate vertices, and 

(2) Some of the neighbours are degenerate themselves. 

The more general case (2) is tackled in Kruse (1986); for simplicity we assume here that 

all neighbours of the u-degenerate vertex x0 are nondegenerate vertices. 

Let us first recapitulate some necessary basic notions: 

http://orion.journals.ac.za/



13 

Definition 3.1 (Kruse {1986), p. 66): 

Let G0 be the general DG of a a-degenerate vertex x0• Then a subgraph G0 is 

called a neighbourhood correspondence (N-correspondence for short) of x0 or G0 if 

each neighbouring vertex x8 of x0 is assigned to at least one node of G0 which 

corresponds to x8
• 

Definition 3.2 (Kruse {1986), p. 67): 

A subgraph G0 of G0 satisfies the neighbourhood condition (N-condition for 

short) if it is anN-correspondence of x0 and connected. 

The main theoretical result can then be summarized as follows: 

Theorem 3.1 (Gal {1978 and 1985)): 

In G2 there exists a tree G2 £ G2 that 

(1) connects G2 with all its adjacent nodes in G(X) notinG~, and 

(2) satisfies theN-condition. 

A tree G2 of G2 with the properties in Theorem 3.1 is called anN-tree. 

Let us illustrate such a tree in a G~ associated with a 2-degenerate vertex x0 
l Ol8 with 

the aid of a hypothetical DG in Fig. 3.1; the edges of G~ are bold lines. 
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Fig. 3.1 

o - transition nodes 

0 - internal nodes 

-edge of a minimal N-tree 

-edges of anN-tree 

I 

t 
I 
I 

I ~ 
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In Fig. 3.1 the nodes in the frame are the transition nodes. The nodes B1, B2, B3 of the 

representation graph are associated with the (non-degenerate) vertices x1, x2, x3, 

respectively, which are neighbours of x0• 

As is seen from this example and as follows from the proof of Theorem 3.1 several 

N-trees G~ may exist. 

Further research into this problem resulted in the theoretical basis for a method of 

determining a minimal N-tree, G~min· It is based on a new pivot selection rule; pivot 

steps according to this rule are guaranteed to lead from one transition system of the 

corresponding DG to another. This rule is therefore called the transition node pivoting 

!lJ!g - TNP-rule for short. The principle is as follows: Let x8 be a nondegenerate 

neighbouring vertex of the IT-degenerate vertex x0 with the associated tableaux B8 • 

Pivoting from B8 into a transition node B~ t B0 , a nonbasic column t in B8 which is 

different from the pivot column is selected. After the pivot step is performed, column t 

in B~ has only nonpositive entries in the rows in which the basic variables are zero. Let 

us refer to such columns (with only nonpositive entries) as "transition columns". 

Pivoting in B0 the pivot elements are selected such that column t remains the transition 

column. 

This way of selecting pivots implies a new subgraph, G~ (t) of G~, which is called the 

t-transition-degeneracy-graph. 

It has been proved: 

Theorem 3.2 (Geue (1989a)) 

Let all neighbours of the IT-degenerate vertex x0 be nondegenerate. Then the 

t-transition-degeneracy graph G2 (t) satisfies theN-condition. 

Following Definition 3.2 the graph G~ (t) is obviously connected. 

Based on Theorem 3.2 the following theorem could be proved: 
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Theorem 3.3 (Gene (1989a)) 

In G~ there exists a minimal N-tree, G~min• that connects all transition systems 

in G~ without using any internal node of G~. 

For illustration see Fig. 3.1. 

A computerised algorithm is being developed to determined~. Theorem 3.3 implies that 

there cannot be a more efficient procedure to determine all neighbouring vertices of a 

IT-degenerate vertex x0 irrespective of the performance of the algorithm. Thus, the 

N-problem can now be regarded as solved. 

The TNP-rule can be used to handle quite unrelated problems. One of them is to 

determine all vertices of a convex polytope. The basic idea is to transform X (cf. (2.2)) 

from IR" into IR" • t, by adding b to the columns of A, such that an (m-1)-degenerate 

vertex x' f IR" + I of the enlarged system results. A similar idea has been used by 

Mattheiss (1983) and by Eiselt and Sandblom (1985). It is easy to prove that every 

vertex of X is a neighbour of x': Determining G!min of G! (x'), it is an easy task to find 

all neighbours of x', i.e. all vertices of X. A corresponding computerized algorithm is 

being developed. 

Another consequence of the above theory, which is still under theoretical consideration, 

is the possibility to modify the simplex method for solving LP's so that an optimal 

solution can be found in far fewer iterations than in any commercial code (including 

various crash versions). 

4. CYCLING OF THE SIMPLEX METHOD 

In any mathematical programming problem in which the constraint set is given by X and 

for the solution of which some version of the simplex method is used, cycling may occur. 

Some years ago the opinions on whether or not cycling occurs in real-world problems 

using professional codes have been divergent (see, e.g., Gass (1979), Kotiah and 

Steinberg (1977), (1978), Majthay (1981), Teigen (1980)). Regardless of this discussion 

anticycling methods have evolved since 1952, starting with Charnes' perturbation 
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method (1952). Notice, however, that Dantzig (1963) mentions on pp. 231 f. that A.J. 

Hoffman constructed the first example of cycling in 1951. In the fall of 1950 Dantzig 

himself made the first suggestion for an anticycling procedure in a lecture on LP (Gass 

(1989)). 

Subsequently several other anticycling methods have been proposed (see, e.g., Altman 

(1964), Avis and Chvatal (1978), Azpeitia and Dickinson (1964), Bland (1977), 

Fleischmann (1970), Harris (1973), Wolfe (1963)). 

As recent papers show (cf. Cameron (1987), Cirina (1985), Hattersley and Wilson (1988), 

Magnanti and Orlin (1988), Ryan and Osborne (1988)), cycling does occur in real-world 

applications and the cycling problem, especially from the viewpoint of efficient 

anticycling devices is not yet finally solved. In this connection it is also interesting to 

mention that one can find •Only a few different examples for LP's that cycle (Beale 

(1955), Gassner (1964), Hoffman (1953), Marshall and Suurballe (1969), Cunningham 

(1979), Solow (1984)). 

This can all be regarded as "proof" that the reasons why cycling occurs or under which 

conditions it occurs are still unknown. Theoretical considerations of the cycling problem 

can be found in Gassner (1964), Ollmert (1965, 1969), Marshall and Suurballe (1969), 

who - summarizing concisely - dealt with the question of the minimal number of rows 

and columns in an LP or in a transportation problem for which cycling can appear at all. 

As is seen the cycling problem remains a problem in theory as well as in real-world 

applications. Regardless of these facts, we consider the question "why or under which 

conditions does cycling occur" ("why?" for short) as a challenge. 

There are several ways to approach the "why"? Let us state firstly that in G2 there are 

almost always closed lines (circuits for short) which are potentials for simplex cycles (see 

property of u x n-DG's in Section 2 and also Fig. 3.1). 

The main question on which the research concentrated was: Which properties should a 

circuit C of G~ have such that C becomes a simplex cycle in the associated LP? 

We found that there are several possible concepts that may serve as a basis for answering 

the question "why?": 
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(1) The concept of the induced point set 

(2) The concept of the induced cone 

(3) The concept of the enlarged DG 

Because even a concise description of these three concepts would be beyond the scope of 

this paper we simply refer the reader to ZOrnig (1989) for further details. 

4.3 CONSTRUCTION OF LP's THAT CYCLE 

In order to be able to study the cycling phenomenon in greater depth and from various 

viewpoints, also with the aid of a computer, it is unavoidable to have as many different 

LP's that cycle as are needed available. In other words, based on the theory of DG's, a 

method of constructing cycling examples of arbitrary size m x n had to be created. 

Based on such examples the following problems can be studied: Does an LP really cycle 

using commercial codes? Is cycling in a circuit C stable, or - if there are several circuits 

-does cycling "jump" from one circuit to another (e.g. because of rounding errors), and 

if yes, what are the consequences for anticycling methods? How good are anticycling 

devices compared with one another? In other words, which of them use the "shortest 

path" to get through the set 8° without cycling (see "stalling" in Cunningham (1979) 

and Balinski et al. (1986))? How do Bland's pivoting rules (Bland (1977)) behave from 

the viewpoint of a DG? And so forth. 

A general method of constructing cycling LP's of arbitrary size has been found. It 

should, however, be noted that this general method is not immediately suitable for 

algorithmic purposes. However, the method indicates the construction of cycling 

examples of arbitrary size by a successive step-by-step procedure; it uses a system of 

(determinant-) inequalities (for further details see ZOrnig (1989)). 

The system of the (determinant-) inequalities can be used for construction of cycling 

examples starting with a known one. This means that using this idea it is possible to 

modify or enlarge any given cycling example by one column or one row in one step by 

solving the corresponding linear determinant-inequalities. Using this procedure which is 

implemented on an IBM 4341 it is possible to construct cycling examples of arbitrary 

size (Geue (1989b)). 

Incidentally, it can be shown that cycling is prevented when using the TNP-rule. 
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5. DEGENERACY IN AN OPTIMAL SOLUTION TO AN LP 

5.1 OPTIMUM DEGENERACY GRAPHS 

Consider 

(5.1) max z = cT x, 

X(X 

c, X ( IR0 

with X as in (2.2) and suppose that the a-degenerate vertex x0 
£ X is an optimal 

solution of (5.1). According to the definition of the nodes set B0 of the corresponding 

(positive, negative or general) DG, the nodes B~ £ B0, u = 1, ... , U, are primal feasible 

bases of (5.1). As is known, not every primal feasible basis of (5.1) is a dual feasible 

basis, i.e. optimal basis; this depends on the cost vector c. Hence let B( c) be the set of 

all optimal (i.e. primal and dual feasible) bases of (5.1) and let 

(5.2) B0( c) = B0 n B( c) 

be the set of optimal bases (nodes) of x0• Assume throughout that B0(c) liP, i.e. x0 is an 

optimal vertex. The subgraph G2(c) of G2 induced by B0(c) is then called the positive 

optimum DG (o-DG for short, Kruse {1987)). Similarly for the negative and general 

o-DG. If cis fixed we simply write G2, G~ or G0, and similarly B0 for the node-set. 

The theoretical research on o-DG's concentrated on their various properties. The most 

important preliminary results of this recently started research are summarized in the 

following lemma. 

Lemma 5.1 (Kruse 1987) 

(i) The case that B0(c) = B0 exists (i.e. all the bases associated with x0 are 

optimal bases) 

(ii) There is a triple (A, b, x0) to which no objective function z = cTx can be 

assigned such that B0(c) = B0• 
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(iii) The case exists that one and only one basis of x0 is an optimal basis (i.e. 

B0( c) is a one-element set) 

(iv) For the case that one and only one basis of x0 is an optimal basis it is 

necessary that G?(c) has at least one isolated node. 

(v) G?(c) can be disconnected. 

5.2 SENSITIVITY ANALYSIS UNDER (PRIMAL) DEGENERACY 

Sensitivity analysis (SeA for short) with respect to the right hand side b (RHS for short) 

in (5.1) ("RHS-ranging") or with respect to the objective function coefficients cj of c in 

(5.1) ("COST-ranging") has become a constituent part of commercial LP-software. 

Such rangings are computed in the sense of postoptimal SeA, i.e. first an optimal 

solution is found, and then SeA is performed. 

Let us first represent the simplex tableau of the nondegenerate optimal solution 

associated with the basis B (Tab. 5.1): 

Tab. 5.1 

a-t (!J..) 
IJ m,n 

(Y;)t ,m 

First consider RHS-ranging in terms of 

(5.3) b; (.\) = b; + .\, i f {1, ... , m} fixed 

Since we consider RHS-ranging as a postoptimal analysis, the parameter ,\ is set to ,\ = 0 

until an optimal solution to (5.1) is found. Then the LP (5.1) can be rewritten as 

(5.4) max Z = CTX 

XfX(.\) 

where 
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(5.5) X(.\):= {x £ IR"IAx 5 b(.\), x ~ 0} 

ei £ IRm unit vector 

i £ {1, ... , m} fixed, 

and we let x0(.\) be an optimal vertex. According to the requirements of postoptimal 

analysis we have 

X(O) :=X, 

x0(0) := x0• 

Assume first that x0 is the nondegenerate unique optimal vertex of (5.4). Then the 

basis B0 is uniquely assigned to x0. SeA in terms of (5.3) means the determination of the 

critical region (interval) A0 such that the basis B0 remains optimal for all .\ £ A0 (see, 

e.g., Gal (1979)). 

Suppose now that x0 is a u-degenerate optimal vertex of (5.4) for ,\ = 0. The set B0 is 

assigned to x0. Setting .\ "I 0 and .\ £ ( -E, E), £ > 0 sufficiently small, B0 "I B0
(..\) holds 

in general. 

The question hence arises what SeA means in terms of (5.3) in this case. To say 

"Determine A0 , such that for all .\ £ A0 the optimal basis (which one?) remains optimal" 

is dubious. 

In papers dealing specifically with such questions (see, e.g., Evans and Baker (1982), 

Knolmayer (1984)) the proposition is found (using our notation): Determine A& for each 

fi&, k = 1, ... , K, K := I B0 I· Then the overall critical interval, A0
, is defined by 
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K 

A0 := U A~. 
k=1 
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This proposition concerns the procedure of determining the overall critical interval A0• 

However, it does not specify what A0 means, i.e. what should remain invariant for all A £ 

Ao. 

Let B(A) be the set of all nodes (optimal bases) of {5.4) and let B0{A) := B(A) n B0 be 

the set of optimal bases associated with x0(A)j then :8°(0) := B0• 

In Piehler (1988) the following theorem is proved: 

Theorem 5.1 (Piehler (1988)} 

K 
B0{A)f tjJ <==}A £ U A& 

k=1 

SeA in this sense then means to determine the overall critical interval A0 such that for all 

A £ A0 at least one optimal basis B~ £ B0 remains optimal. 

Up to this point the problem seems to be solved. Notice, however, that in determining 

A0 via~ A&, dual simplex steps are used (cf. Knolmayer {1984)), i.e. one proceeds along 

the edges of G~. As Lemma 5.1{v) shows, G~ need not be connected. Which k's in U A0 

k k 

should then be taken into account? The k's that belong to a component (maximal 

connected subgraph) of G~? And if there are several components in G~, which one 

should be considered? Or is it necessary to consider all of them? And if there is an 

isolated node in G?, is it sufficient to consider this one? 

I . Using Knolmayer's {1984) approach to determine A0 by negative pivots (i.e. going along 

the edges of the negative o-DG) this algorithm may fail in the case of disconnected 

negative o-DG's. Therefore, current research concentrates on theoretical backgrounds 

and on finding a method of determining A0 with minimal effort such that the "true" A0 

results. 
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In this connection notice that if x0 is an optimal u-degenerate vertex, then the 

commercial RHS-codes yield false results. 

The problem is analogous in the case of SeA with respect to ci, j ( {1, ... , n} fixed, in 

terms of 

(5.7) ci (t) = ci + t, j ( {1, ... , n} fixed. 

Our proposition for the meaning of COST -ranging in a degenerate case reads: 

LetT& be the critical interval oft in terms of (5.7) associated with the basis B& and let 

K 
(5.8) T 0 := U T& 

k=l 

be the overall critical interval for COST-ranging with respect to an optimal 

u-degenerate vertex x0• 

Then SeA with res·pect to cJ means to determine T0 such that for all t ( T0 at least one 

eg remains optimal or the vertex x0 remains optimal. 

With a few exceptions the open questions in this case are similar to those in the case of 

RHS-ranging; therefore, we shall not deal with them here. Let us, however, stress that 

in this case too the commercial COST-ranging codes yield false results. 

5.3 SHADOW PRICES IN LP UNDER DEGENERACY 

As is very well known, shadow prices are important indicators not only in LP (see, e.g., 

Proll (1987)). To determine shadow prices in LP is no problem, provided that there is 

no degeneracy; they can be found immediately in the optimal simplex tableau (in 

whatever form it is available). 
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Assume that x0 is the nondegenerate optimal vertex associated with basis B0. Let us 

recall that the ith shadow price, Yi• (cf. also Tab. (5.1)) in LP is defined as 

{k 
(5.9) Yi := 00,• 

I 

where Yi is the ith component of c! B01. In the case where x0 is an optimal 
0 

u-degenerate vertex, "two-sided shadow prices" are defined in the literature (Akgiil 

(1984), Aucamp and Steinberg (1982}, Strum (1969}, Williams (1963) - see also the 

survey in Gal {1986)) - as follows: 

(5.10) 

the right side partial derivative 

- {)z 
Yi := Ol)j' 

the left side partial derivative. 

CASE A 

Let x0 be a nondegenerate optimal vertex. Then 

(5.11) Yi = Yi = Yi for all i = 1, ... , m. 

CASEB 

Let x0 be an optimal u-degenerate vertex. Then 

(5.12} Yj ~ yj 

and, in general 

Yi "I Yi· 

http://orion.journals.ac.za/



25 

In the above references yj is interpreted as "the maximal buying price for one unit of 

resource hi", and Yi as "the least selling price for one unit of resource bi". 

To determine the two-sided shadow prices, i.e. yj and Yi for all i = 1, ... , m, the 

following suggestion can be found in Akgiil (1984) and Aucamp and Steinberg (1982): 

Let y< ~> be the shadow price associated with tableau B~ (in our notation). Then 

(5.13) y: =max {y<k> }, 
I k i 

y! =min {y<k>} 
I k i 

The determination of the two-sided shadow prices is closely related to SeA with respect 

to RHS. A corresponding parametric approach to determine the two-sided shadow 

prices has been suggested in Gal (1986). Therefore, the open problems in connection 

with the determination of shadow prices under degeneracy are analogous to those in SeA 

with respect to RHS. 

5.4 REDUNDANCY, DEGENERACY AND SENSITIVITY ANALYSIS 

In the search for reasons for degeneracy, one may say that, in general, the occurrence or 

non-occurence of degeneracy depends on the structure of the matrix (A, b) (cf. also 

Greenberg (1986)). 

A sufficient condition for degeneracy is weak, redundancy (see also Karwan et al. (1983)). 

Obviously, if a weakly redundant constraint passes through a vertex x t X it always 

causes an overdetermination of x and hence degeneracy. 

In this section we shall concisely discuss interrelations between degeneracy caused by 

weak redundancy, SeA and shadow prices. To illustrate the problem, consider 

s.t. x1 + 6x2 $ 30 

2x1 + x2 $ 16 

x1 + 2x2 $ 14 

7x1 + 4x2 $58 

X1 ~ 0, x2 ~ 0 
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The following four tableaux are the optimal tableaux associated with the optimal 

2-degenerate vertex x0 = (6, 4)T 

0 
111 3 4 xn 0 

ii2 3 6 xn 
1 -.09 .54 6 1 -.1053 .1579 6 
2 .18 -.09 4 2 .1842 -.0263 4 
5 -.27 -.36 0 4 .0263 -.2895 0 
6 -.09 -3.45 0 5 -.2632 -.1053 0 

t:.z~ 
J 

.09 .45 10 2 
t:.zj .0789 .1316 10 

-o 4 5 83 XB 
-o 5 6 84 XB 

1 .6 -.3 6 1 -.4 .2 6 
2 .3 .6 4 2 .7 -.1 4 
3 1.3 -3.6 0 3 -3.8 .4 0 
6 -3.3 -.3 0 4 .1 -.3 0 

t:.z~ 
J 

.3 .45 10 t:.z~ 
J 

.3 .1 10 

The set of 8° j B0 because there are two more basic indices associated with x0 

(regardless of dual feasibility), i.e. Bg = {1, 2, 3, 5} and sg = {1, 2, 4, 6}. The graphs G2 
and G? associated with x0 are depicted in Fig. 5.5a, b. 

2 

5 

Fig. 5.5a 
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6 

5 

Fig. 5.5b 

In Fig. 5.6a and 5.6b the o-DG's G~ and G?, are shown respectively. 

I 
0 

Fig. 5.6a 

0 .. 

I 

D 
2 4 

Fig. 5.6b 

Tableau .BY shows that constraints nos 3 and 4 are weakly redundant (the elements 

associated with the corresponding rows in the nonbasic columns are negative and the 

value of the corresponding basic variable is zero) -see also Gal (1983). 
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Using all four optimal tableaux the overall critical interval for At is 

4 
(1° = u ~~~ = [-22, oo), and for A2 it s [-11, oo), "the" shadow prices considering m 

k=1 

tableau B~ would be Yt = .09, y2 = .45. 

It is known that omitting (weakly or strongly) redundant constraints does not influence 

the set X. Hence, if we omitted the weakly redundant constraints in our example (or in 

general) would we obtain the correct results for SeA with respect to RHS or for the 

shadow prices from the reduced tableau? 

Let us omit the last two rows in Tableau B~. Then we obtain At £ [-22, 66] and A2 £ 

[-11, 44] which is not the same result as above. 

One might defend the viewpoint that by omitting the weakly redundant constraints a 

"cleaned" X is obtained and the optimal vertex remains the same (though 

nondegenerate). So why deal with such questions? It is known that it does matter 

whether (weakly or strongly) redundant constraints are omitted or not (see, e.g., 

Zimmermann and Gal (1975)) from the economical point of view. All papers dealing 

with SeA or shadow prices under degeneracy (see the survey in Gal (1986)) use 

illustration examples in which degeneracy is caused exclusively by weak redundancy. 

From a purely formal point of view one might say: Methods for determining redundant 

constraints (see Karwan et al (1983)) are used to reduce the number m of rows of A in 

Ax $ b by omitting redundancies to save CPU-time for finding an optimal solution of 

the associated LP. If degeneracy is caused exclusively by weak redundancy, SeA or 

shadow price determination would be given by the final (optimal, nondegenerate) 

tableau after finding an optimal solution without redundancies(= no degeneracy). 

From the economical point of view this is simply not true. Using all tableaux B~ , k = 1, 

... , 4, in our example we find yj = 0, yj = .09, y~ = 0, Y2 = .45, Y3 = 0, Ya = .3, Y4 = 0, y.j = 

.1316. Which are the "true" shadow prices and which are the "true" critical intervals for 

At and A2? 

To answer these questions in all details an additional theoretical formal and economical 

analysis is needed. 

The situation is slightly different in the case of SeA with respect to c. In our example 
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T0 := U T~ 

k=l 

yields 

tl f [-.83; 1], t2 f [-.5; 5] 
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Considering Tableau B? with a.nd without the last two rows we obtain the same results. 

The reason for this is obvious: By changing c we change the gradient of cTx. The limits 

for changing care reached when c(t) becomes linearly dependent with the gradient of a 

bounding hyperplane of X that is "incident" on the optimal vertex x. Such a "rotation" 

is obviously independent of the weakly redundant constraints passing through x. 

However, when the weakly redundant constraints are included, the "jumps" from T~ to 

Tg etc. certainly do have some economical interpretation. 

6. CONCLUSIONS 

Degeneracy may appear in any mathematical programming problem of which the 

constraints set defines a convex polytope. When degeneracy does occur it may influence 

the effort required to compute an optimal solution, or it may completely change the 

determination and interpretation of e.g. sensitivity analysis (SeA), shadow prices etc. 

Until now the problems associated with degeneracy have been tackled separately. In 

order to be able to handle all aspects from a common point of view, so called degeneracy 

graphs (DG for short) have been defined. A theory of DG's has been developed in which 

- among other things - the cardinality of the node set, the connectivity, and a general 

concept have been found. This theory is then used to explain reasons for cycling of the 

simplex method and to determine all neighbouring vertices of a degenerate vertex with 

minimal effort (neighbourhood problem). For a degenerate optimal solution of a linear 

programming problem the theory of so-called optimum DG's has been developed which 

can be used for explaining why commercial codes fail to give correct results for 

sensitivity analysis with respect to the RHS or to the cost coefficients and how to 

overcome difficulties. Finally, the interrelations between weakly redundant constraints, 

degeneracy, SeA and shadow price determination have been indicated using optimum 

DG's. 

Since the theory of DG's and the application of this theory to various degeneracy 

phenomena is quite new, there remain several questions yet unsolved. For instance, 

http://orion.journals.ac.za/



30 

application of DG's to explain cycling of the simplex method and theoretical 

considerations of properties of special induced point-sets have not yet been analysed in 

all ramifications. In this regard methods for constructing examples of cycling LP's with 

arbitrary size a~so need to be improved. The theory of optimum DG's is at its very 

beginning. Therefore, open problems concerning SeA and shadow prices under 

degeneracy are still not fully solved. 
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