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ABSTRACT

In this paper, a stochastic network is an undirected graph with unreliable edges and absolutely
reliable nodes. Its connectedness probability is determinedliaypility preserving network
reduction. The principle of this method consists in splitting the underlying deterministic graph
of the stochastic network into two edge-disjoint subgraphs via a separating node set. One of
the subgraphs is replaced with a simpler structured graph (replacement graph) in such a way
that the interesting reliability criterion of the original stochastic network is retained. Special
attention is given to the construction of suitable replacement graphs. The case of a 3-point
separating node set is considered in more detalil.

1. INTRODUCTION

Network reliability analysis arises in many important engineering areas, in particular

communication networks, computer networks, monitoring and military systems as well as
transportation and electrical power systems. Hence it is imperative that effective tools are
being developed for the reliability analysis of complex networks with a general topological

structure.

In this paper, a stochastic network is an undirected graph with unreliable edges and absolutely
reliable nodes. The edges can be in two states: available (operating) or not. The terminology
used throughout the paper refers to communication networks. Thus, if an edge is not
available, then no direct transmission of information between its end nodes is possible. The
paper only deals with theonnectedness probabilityf a stochastic network, i.e. with the

probability that there is a path between any node pair of the network, which only consists of
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available edges. For the sake of convenience, the connectedness probability of a stochastic

network is simply referred to as its reliability

Basic Notation

~

G stochastic network under discussion

G =(N,E) G underlying deterministic graph with node $¢t |1,2,..,n(and edge
setE

G' any stochastic network with underlying deterministic g&iph

R(é')) connectedness probability (reliability)(éf

U,u separating node set, cardinalityJof

U empty set

2. NETWORK DECOMPOSITION
A subsetU of N is said to be &eparating node seif G if there exist two edge-disjoint
subgraphﬁlz(Nl,El) andG?2 :(NZ,EZ) of G such that
c=G6'0G?% G'nG? =(u,0)
Figure 1 shows the splitting of a gragh with 11 nodes and 24 edges into two edge-disjoint

subgraphsGland G2 by the separating node sbt= |1,2, 4L It is an intuitive approach to

separately carry out reliability analysis f&' and G2 and to combine the results to obtain

R((~3). Pursuing this approach requires the introduction of some combinatorial concepts.

A partition 77of U is a family of disjoint subsets of) the union of which isU. The
elements ofrare calleblocksLet N = |7T1,7T2,...,7TB( be the partition set o) . B= B(uU) is
the Bell-numberof U:B(2)=2 B(3)=5 B(4= 15 B( 5= 52 B(u) grows exponentially

fast with increasingu. Partition 72; is arefinementof 7; if each block of 7j can be

obtained by splitting a block of; . (Trivial splitting is allowed.)
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G

Figurel Decomposition of a graph with 11 nodes and 24 edges

In N a partial order<” is introduced in the following way: The relatiom’< ;" holds if and
only if 72; is a refinement ofz,. Thus, thepartition lattice ([, <) is given. Letn, be its
smallest andr; its greatest element. Further, lgtz; be the greatest partition satisfying both
mn;<n andnn; <n;. Let U, (G}) be that node set (graph) arising fram(G') by fusing
the nodes of each block of; into one nodej=12;j=1,2,..B .There is obviously a one-to-
one correspondence between the blocks ofind the nodes ofl; . Hence, in what follows,
the elements olU; will be identified with the corresponding blocks af .The stochastic
network G* induces partitions dfl in the following way: partitionz; is induced if the nodes
belonging to a component aB* belong to the same block ot,. By assumption, the

underlying deterministic graph G is connected.

Theorem The reliability ofGis given by
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Sv- 2 nEl a2
R(G) = .lej(G ) RGY). 1)
J:

where P, (51) Is the probability thaG! induces partitionzz; and each component &t
has a node in common with U

Proof Let us introduce the following random events:
A each component &' has a node in common with U

A G! induces partitionz; and each component & has a node in common

with U

Then Aq, Ay, ..., Ag is a set of mutually exclusive random events with
A=A0AO---O A
Therefore, Aq, Ap,...,Ag is a complete system of random events. Moreoﬂeé‘ﬂ) =0,

since, on conditionA, G contains at least one component, which is completely isolated
from G2. On the other hand,
RG[A) = RGY),

since, givenA;, G is connected iff ifé% Is connected, because in this case the components

of élj are connected by the components’:-‘(ff (and vice versa). SincB(Aj) = P](éjl) , the

proof of the theorem is finished by applying the total probability rule.

Of course, formula (1) is only useful if the probabilitié’ls(é%) are known. To establish a
system of equations in thig, (é%), note thatélk is connected if and only if each component
of G! has a node in common witd and Pi (é%) induces a partitionszj satisfying

njn = m. Therefore, the probabilitieB, (é%) satisfy

Y P(GhH=RGk) )
N 7m=mS

To simplify notation, let, foi =12;k =1,2,...B
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pi=PG") P =(d b th)
| = RGY), R =(R B...BJ

_Rif myme=m
ajk = :
otherwise

Note thatA =((ajk)) is the coefficient matrix of the system of linear equations (2). Hence,

—

system (2) is equivalent to

Apt=R?! 3)
Thus, formula (1) becomes

R(G)=(p")" Ap?

(Of course, the roles @&’ andG? can be exchanged.) From the theory of partition lattices it
is well-known that the matriR is regular (see, for instanogigner[1])). Hence, from (3), if
A denotes the inverse matrix of A

pt=ATR? @)
Thus, the decomposition formula obtains its final form:

RG)=(RHTATR? 5)

Note that the matrix As a characteristic of the partition lattid®, €) and depends only on the
cardinality uof U. In particular, A does not depend at andéz, respectively.
From the modeling point of view, determinin@(é) is equivalent to computing the
availability of a binary coherent system. Hence, with respect to computational complexity,
computing R(é) is an NP-hard problemB@ll [2]). Thus, applying the decomposition
formula (1) can be expected most efficierlt iSplitsG into two subgraphs of about the same
“size”. The splitting approach has been appliedBe@ichelt, Tittmanr5] to the K-terminal
reliability of a stochastic network. The proof of formula (1) given here is new.
Example 1 Let us consider the gragh which is split in Figure 1 by the separating node set
U ={1, 2, 3} into two subgraph€51 andG2. Letn = |771, 7T2,...,7T5c be the partition set of
U with

m =2l =112 =113Q)n, =1 1G5 =1 103 (6)
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Note that here and in what follows blocks are separated by commata. In partitelas .

The corresponding matricesahnd AL are

11 1 1 0 0 0 11
0 1 “1/2 12 12-1
A={G1 01 Al= 12 -12 12 -1
110 112 12 -12 -1
000 -1/2 -12 -12 1
From (4),
= R

1r ]

ph=a[-R+ e - §

1 ]

= t[R-He - d

i ]

h=2[+R+ - - §

p=[2R-R-d- &+ §

[ 71 Rl RZ

Table 1 shows the corresponding vectBfsand R? in case of the common edge availability

1| {123}

0.983567

0.980261

2 [{12,3}

0.938471

0.968360

3[{13,2}

0.943555

0.978309

4[1{1,23)

0.972559

0.939692

5{1,2,3}

0.892682

0.927445

p = 0.8. Formula (5) yields the reliability &

Hence,G is not connected with probability- R(é) = 0036904

R(G) = 0.963096

Tablel Numerical results for example 1 (Beichelt [3])
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3. NETWORK REDUCTION

Network reduction (network transformation) is a powerful tool for the reliability analysis of

complex stochastic networkd . Most of the known efficient (nonexponential) algorithms for
computing network reliability criteria are based on network reduction. It is characterized by
simplifying the topological structure of the underlying gr&plby substituting a subgraph of

G by one or moreeplacement graphdMore exactlyreliability preserving network reduction

involves three basic steps:
1) Decomposition of Gy a separating node set U
c=G6'0G% GlnG?=(,0)
2) Generation of a graph‘s*.2 by replacingG2 with a graphsH Z’k, k=1, 2,..r, satisfying
GlnH%*=(u,0), k=12,...r
3) The stochastic networki belonging toH* =G0 H2X are constructed in such a way
that

R(G)=T(RHY, RH?..., RA"), (7)
whereT()) is a one-to-one-function frofi®,]" on [0, 1].

As in G, the reduced(transformed graphs HX are assumed to have absolutely reliable

nodes. Moreover, the availabilities of the edgesf%&fin HX are the same as i6; k =

1,2,..., r. Here only the case of a linear function

TO4 %% )= R+ B ¥+-+ px

is considered. Then the reduction equatidnsimplifies to
RG)=h RHY)+ b RH?)+-+ h ") (8)
The factorshy are calledreduction constantslo obtain a system of equations in the and

in the unknown availabilities of the edgesreb?'ksuch that condition (8) is satisfied, formula

(1) is applied toHK =GO H2k:
~ B ~
R(Hk):zlp}RHJZ'k), k=1,2,...,r (9)
J:

Combining (8) and (9) yields
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~ B r ~
RG)= ¥ p 3 ik RAZX) (10)
ji=1 k=1

Comparing the coefficients of thp]* in (1) and (10) yields
r ~
Rjzzkz_lh( RH?%) j=12....8B (11)

The reIiabiIitiesR‘j2 have to be determined by any suitable method, whereas the reliabilities

R(ﬁ?'k) are given in terms of the unknown edge availabilitieééf

If there is no redundant equation in (11), then two conditions are necessary for the existence

of a unique solution of (11):

1) The total number of edges in the set of replacement giaghsisfiess > B — r. If
s>B-r; then the availabilities o§— B+r edges have to be fixed. This should be done in
such a way that solving (11) is facilitated.
2) Each partition otJ can be generated by at least one of the stochastic replacement networks
A2LA22. F%.
In case r= 1, equations (8) and (11) simplify to
RG)=hRH)

and

RF=hRH?); j=12..,B (12)
Note: In what follows it is assumed that, for akKL, 2,..., t both inG and H Kthe indicator
variables of the states of the edges are independent.

Example 2 Let graphG be split by a 3-point separating nodedet {1, 2, 3} into two edge-

disjoint subgraphSBl and G. In this case it seems to be obvious to reple@é with a

single replacement graph= 1), namely a “star”, i.e. a tree consisting ofdg§jes which

4 &

& &N/ &3 &
1 2 3 1 2 3

Figure 2 Replacement graph “star” Figure3 Replacement graph in example 2



71
http://orion.journals.ac.za/

have a node, say node 4, in common (Figure 2). This replacement graph generates all 5
partitions ofU, but it has only 3 edges. Then (12) becomes a system of 5 equations in 4

unknowns. To generate another unknown parameter, the common node 4 can be assumed
unreliable too. In this case, the reduced grd;thouId have both absolutely reliable and

unreliable nodes, contradictory to our assumptionsI:bn However, in case of the well-
knowndelta-star-reductionwhere a “delta” (triangle) is replaced with a sthe equations in

(12) are linearly dependent in such a way that one of the equations is superfluous. Hence, in
this special case a unique solution of (12) exists (see, for instance, Beichelt [4]. Unfortunately,
in general, for a 3-point separating node set there is no tree with at least 4 edges which can
serve as a replacement graph. (A replacement graph being a tree simplifies the structure of the
system of equations (12) and, therefore, its solution.) Figure 3 shows a possible replacement

graph with 5 edgesg,, &,..., ¢ containing one cycle. Lep; be the availability of edge to
be determined andp; =1-p ;i=12,...5. The availability of edgee; is fixed to be
ps =1/ 2 Furthermore, let

aj=2R/h j=12..5

With U given by (4), the nonlinear system of equations (12) becomes (to verify, condition
with respect to &; available” and & not available”):

q=2-NRk-BR

HL=C-nR-B)R

a=(n+tu(R*t*R)-2RRBR

3=02--BMA

as=(Rt B AR
There exists a unique solutionpf p,, p;, p,} Of this system of equations. In view of its
complicated structure, it cannot be given here. However, dependent on the numerical values
of the Rjz, the p, need not satisfy conditions

0<p <1 i=12..5 (13)
In case of thestar-delta-transformatior(a star is replaced with a triangle), this obseovat

has been already made Bpsenthal and Frisqui]. Nevertheless, also in what follows the

p; are referred to as “availabilities”.
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@ @ ® ®
1 2 3 1 §~2 3
H21 H2,2

Figure4 Replacement graphs in example 3

Example 3 As in the previous examples, lét= {1, 2, 3}. The subgraplﬁs2 is replaced with

the two grapthz;L and H?? depicted in Figure 4. Lep;, pp, B3, 1 be the availabilities of

the edgesg, &, @, @ and py =0. With r = Rjz; j=12,...,5; the system of equations (11)
becomes

n=h+h

p=hpy+hp

=P+ - AR) (14)

=Mmp+hp

5 =MmpLp,
The solution is

_ 2r5

- 5) +r3+r5—r4

_ 2rg
p=———— 2
r3+r4+r5_r2

_ 2r5(r3+r5=r =T 4
(o +r3+r5= ) 31 4 517 J—Brig

With p,, p,, p; known, h is given by the last equation of (14) ahgl by the first. Note that,

for all replacement graphs belonging to a 3-point separating vertex set,
O<rg<rorgrysri<1

Hence, p, and p, can be expected to satisfy condition (13), wherpass likely to fulfill

(13) if rg+rg>ro+ry.

Unfortunately, even for replacement graphs satisfying the necessary conditions 1) and 2)

stated above, a solution of (11) need not exist. Hence, it is necessary to establish a list of
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replacement graphs, which, dependent on the numerical values of tlgeiarantee the

existence of a solution of (11) with property (13). This task is still outstanding. Example 3
illustrates that the use of more than one replacement graph facilitates establishing such a list.

The idea to use more than one replacement graph in one reduction step is due to Tittmann [7].
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