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ABSTRACT 
Availability of a binary repairable system is generalised on the case when the quality of the 
system’s operation is characterised by some decreasing in time (since the latest renewal) 
function of performance. The corresponding equation for the time-dependent availability is 
derived and the stationary characteristic is considered as well. The probability of exceeding 
the fixed level of performance for an arbitrary instant of time is also obtained. A further 
generalisation is performed by assuming the possibility of a gradual repair. This means that 
the system can be partly available (with the decreased level of performance) during the 
process of repair. Finally, the specific case of imperfect repair is treated. Possible 
generalisations of the last approach are discussed.  
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1. INTRODUCTION 

Consider a repairable system with )(xF ( )(xG ) as the distribution function (DF) of time to 

failure (repair). Let the system starts functioning at 0=t  and then the usual alternating 

renewal process pattern takes place: after the first repair (renewal) the system is “as good as 

new” ( )(xF ) and the time of repair after the second failure is described by the same )(xG  etc. 

Availability )(tA is usually defined [1] as probability that the system is functioning at an 

arbitrary instant of time t . A following equation for the stationary availability SA  as ∞→t  is 

well known: 

τ+
=

T
T

AS  , 

where T is the mean time to failure andτ  is the mean time of repair. 
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Thus, availability describes the binary case when the system can be only in the state of 

operation or repair. In other words, if tX  denotes the corresponding binary variable, then 

][)( tXEtA ≡ . Generalisation can be performed in various directions. In this paper a simple 

parametric model will be treated. 

 

Let the operating system be characterised by some function of performance )(xΦ , where x  is 

the time elapsed since the last renewal. It is often a decreasing function of time and this is 

quite natural for describing degradation in system’s performance. In applications )(xΦ  can 

characterise, for instance, the decreasing in time accuracy of the information measuring 

system or effectiveness of some process of production. Usually this is due to some type of 

wearing out, which often takes place in the process of functioning. Assume that )(xΦ is a 

deterministic function, though the approach can be easily generalised for stochastic processes. 

Thus, immediately after each repair, the function of performance is )0(Φ  and it is assumed to 

be equal to 0 while the system is repaired. 

 

Denote by tΦ  the random value of this function at time instant t  from the start. This means 

that 0=Φ t , if the system is being repaired at this moment and )(xt Φ=Φ , if it is operating 

(and x  is the time elapsed since the last renewal). It is absolutely straightforward from the 

results of the theory of (alternating) renewal processes [1], that 

 

∫ −Φ−−+Φ−=Φ
t

t dxxtxtFxhttFE
0

)()](1)[()())(1(][ ,                          (1) 

where )(xh  is the renewal density function of the renewal process without delay, governed by 

the DF which is the convolution of )(xF  and )(xG . If ,1)( ≡Φ x  then we arrive at the case of 

availability. Hence, equation (1) generalises the notion of conventional availability to be 

called “parametric availability” and will be denoted as ][)( tP EtA Φ≡ . Similar to )(tA , which 

is the mean of binary variable, )(tAP  is the mean of the continuous one. It defines the 

expected quality of system’s performance at an arbitrary instant of time t and can be 

considered as its important characteristic. 

 

Applying the key renewal theorem [1] to equation (1) as ∞→t , the stationary parametric 

availability can be obtained in a usual way:  
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∫
∞

Φ−
+

=
0

)())(1(
1

dxxxF
T

ASP τ
,                                         (2) 

where T and τ  are the mean times to failure and repair, respectively.  

It should be noted, that unlike the binary case, parametrical availability is well defined for the 

instantaneous repair when 0=τ . 

 
The probability of tΦ  exceeding the fixed level ),0()(: 00 Φ<Φ<∞ΦΦ can be easily 

derived for the monotonically decreasing )(xΦ : 

∫ +−Ι−−+−Ι−=Φ≥Φ
t

t dxttxxtFxhtttFP
0

000 )()](1)[()())(1()( ,                (3) 

where )(xΙ  is an indicator function: 1)( =Ι x  for 0≥x ; 0)( =Ι x  for 0<x  and 0t  is uniquely 

defined from the equation: .)( 00 Φ=Φ t  

Similar to (2), as ∞→t  we can derive the equation for the stationary value: 

∫ −
+

=
0

0

))(1(
1 t

SP dxxF
T

P
τ

.                                                  (4) 

 

Example 1 

 

Let    { } { } 0;exp1)(;exp1)( =−−=Φ−−= ταλ xxxxF . Then 

                            { }∫
Φ

−

Φ−=−=
+

=
α

α
λ

λλ
αλ

λ
0ln

0
01exp, dxxPA SPS . 

 

In the following sections of this paper we shall discuss two possible generalisations of the 

parametric availability approach. 

 

2. GRADUAL REPAIR 

While considering operation of repairable (parametric) systems in practice, one can notice that 

some types of systems can be partly operable during the process of repair. It takes place, for 

instance, when after rather quick replacement of the failed part or of the whole system, the 

process of adjustment (alignment) is performed. During this process the quality of the 

potential performance is monotonically increasing in order to reach finally the “ideal” level 
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)0(Φ . If the demand for using the system at this stage occurs, then some types of systems are 

capable to start operating with reduced quality. And this is better than nothing. 

 
A practical example of this situation is the high accuracy onboard inertial navigation system, 

when after the failure and replacement of the gyroscope at least several hours (and sometimes 

more) are needed to reach the nominal accuracy of obtaining navigational parameters. And 

the procedure is gradual, which means that the accuracy is monotonically increasing in the 

process of this operation We had applied the results of this paper on gradual and imperfect 

repair to reliability and availability case study of the Russian precise inertial submarine 

navigation system. The accuracy in this example is measured by the navigational error )(xσ , 

which is the increasing function of x . This means that by increasing accuracy we decrease the 

error: 1))(()( −=Φ xx σ , 1
min

1))(()0( −− ≡=Φ σσ o . 

 
Consider the following model. Let the functioning system be characterised by )(xF  and 

)(xΦ as in the previous section. Assume that during gradual repair the parameter 

monotonically increases from 0  to )0(Φ  according to the stochastic process of the following 

specific form: 

),()( BxxB Κ=Φ , 

where B  is some positive random variable with DF )(xS  and for each (almost each) 

realisation of bB =  the function ),( bxΚ  is monotonically increasing. Linear and 

exponential functions are the simplest examples: 

{ } 0,1exp)(;)( 21 ≥−=Φ=Φ xxBxxBx BB . 

We are going to derive parametric availability )(tAP  and )( 0Φ≥Φ tP  for the described 

system. Denote by )(uxθ  the DF of )(xBΦ  for the fixed x . Let )(xξ  be the stochastic 

process equal to 0  for )0()( Φ≥Φ xB : 

))()0(()()( xxx BB Φ−ΦΙΦ=ξ . 

For the fixed x  the corresponding mean is defined as 

∫
Φ

=
)0(

0

)()]([ uduxE xθξ  

and ))(( 0Φ≥xP ξ  as  

∫
Φ

Φ

Φ−Φ==Φ≥
)0(

00

0

)())0(()())(( xxx udxP θθθξ . 
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The DF of time of repair is defined as function of x  from the equation: 

))0((1)( 0Φ−= xxG θ . 

Generalising equation (1) it is easy to obtain 

∫ −+Φ−=Φ=
t

tP dxxtExfttFEtA
0

)]([)()())(1(][)( ξ  

dydxyxtEyfxhdxxtxtFxh
t xtt

)]([)()()()](1)[(
0 00

−−+−Φ−−+ ∫ ∫∫
−

ξ ,                 (5) 

where ).()( xFxf ′=  

Thus, equation (5) presents the general expression for parametrical availability )(tAP . 

Conducting the limit transition as ∞→t : 

∫∫
∞∞

+
+Φ−

+
=

00

)]([
1

)())(1(
1

dxxE
T

dxxxF
T

ASP ξ
ττ

.                              (6) 

Indeed, the first two terms in the right hand side of (5) vanish and the third term is defined in 

(2). After applying the key renewal theorem to the last term, we arrive at equation (6). It can 

be written in the speaking for itself form:  

∫∫
∞∞

+
+Φ−

+
=

00

)]([
1

)())(1(
1

dxxE
T

dxxxF
TT

T
ASP ξ

ττ
τ

τ
.                          (7) 

This result for the stationary characteristic is intuitively clear: the initial alternating renewal 

process can be split into two renewal processes without delay; the first one consists only of 

periods of operation, the second one consists only of periods of gradual repair. In doing so, 

τ+TT  appears to be the stationary probability to choose the first process and ττ +T -the 

second. 

 

Example 2 

 

Let BxxB =Φ )( . Then for arbitrary DF )(xS ( B  is non-negative) the following intuitively 

understandable result is true:  

2
)]([

1 0

0

Φ
=∫

∞

dxxE ξ
τ

.                                                    (8) 

Indeed, substituting ))0(()( BxxBx −ΦΙ=ξ  in equation (8):  
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2
)0()0(

))0((

)0(

00

Φ




Φ=
















=








−ΦΙ ∫∫

Φ
∞

B
EBxdxEdxBxxBE

B

. 

It is clearly seen, that [ ]BE )0(Φ  is equal to the mean time of repair, because for the model of 

this example B)0(Φ  is the time of repair in every realisation bB = . This consideration 

finally leads to equation (8). 

 

In the specific case, when ),0[,1)0()( ∞∈∀≡Φ≡Φ xx , equation (6) simplifies to 

τ
τ

τ +
+

+
=

TT
T

ASP 2
1

. 

According to definition, the system’ s unavailability is )( ττ +T . This means that the 

possibility of gradual repair results in this example in reducing unavailability by one half and 

it can be quite important in practice. 

 

Similar to equation (5) and generalising equation (3), the following formula can be obtained 

for the probability :)( 0Φ≥Φ tP  

[ ]

[ ] .)())0(()()()](1)[(

)())0(()()())(1()(

0 0 0
00

0
000

dxdyxhdxttxxtFxh

dxxftttFP

t t xt

yxtyxt

t

xtxtt

∫ ∫ ∫

∫
−

−−−−

−−

Φ−Φ++−Ι−−+

Φ−Φ+−Ι−=Φ≥Φ

θθ

θθ
 

Using the similar argument, as when deriving relation (6), the stationary probability is defined 

as  

τ
ττ

τ
τ

τ
0

0

0

))(1(
1 −

+
+−

+
= ∫

t

SP T
dxxF

TT
T

P ,                                   (9) 

where 0τ  is the mean time of repair to a level  0Φ  (while τ  is the mean time of repair to the 

full (maximal) level ))0(Φ . When ττ =0 , we arrive at the case described by the relation (4), 

which does not take into account the possibility of gradual repair.   

Finally, it is clear that some important for practical applications generalisations are rather 

straightforward. For example, it is reasonable to assume that the system is available during the 

process of gradual repair only if )(xBΦ  exceeds some fixed predetermined level mΦ  and then 

to assess availability for this case. The same argument can be obviously applied to the periods 

of functioning as well, when the system is considered unavailable, if the performance function 

http://orion.journals.ac.za/



 135 

is beneath some level. In this case, however, the maintenance activities can be scheduled upon 

reaching this predetermined level. The question is, whether it is reasonable or not to perform 

maintenance in terms of cost per cycle, for instance. Using the developed approach it is easy 

to obtain an optimal maintenance strategy for this case.  

 

3. IMPERFECT REPAIR 

The results of previous sections were derived under the usual assumption that repair is ideal, 

thus returning the system to “as good as new” state after it. In practice repair is always 

imperfect and it is important to understand the errors of the model due to idealized 

assumptions. It is worth mentioning, that even the replacement of the failed item by the spare 

one cannot be considered (in the strict sense) as a perfect repair, because the spares are ageing 

in storage. We shall consider here only one type of imperfect repair, which is defined as the 

combination of the perfect repair and the minimal repair [2]. For simplicity the case of 

instantaneous repair will be treated when 0=τ . Thus, parametrical availability will be 

understood purely as the expected value of the corresponding function of performance. 

 

Let with probability )(xp  every repair be perfect and with probability )(1 xp−  be minimal. 

The standard definition of the minimal repair for the component, which had failed at time t  

since the start of functioning, is as follows[3]: 

( )
)(1

)()(
tF

tFtxF
txF

−
−+= ,                                               (10) 

where ( )txF  denotes the remaining lifetime DF of the component after the minimal repair. 

Consider the random time between successive times of perfect repairs (moments of perfect 

repair form the renewal process) with DF )(xFP . A well-known result of Beichelt and Fischer 

[3] is that 









−−= ∫
t

P duuupxF
0

)()(exp1)( λ ,                                         (11) 

where )(xλ  is the failure rate, defined by the continuous )(xF . 

 

We shall generalise this approach on the case when only perfect repair (as it was in section 1) 

restores the function of performance to its maximal level )0(Φ , while along with minimal 

repairs (statistically defined by (11)) this restoration is performed to the lower level to be 

specified later. We shall call this type of repair the minimal-imperfect repair: it is minimal, 

http://orion.journals.ac.za/



 136 

“concerning the DF” and imperfect, concerning the performance function. As a specific case 

it can be restored to the level it had just prior the failure, but we are looking at amore general 

situation. 

 

Coming back to the case study of the precise navigation system, it should be pointed out that 

the perfect repair results in the replacement of the failed part and a highly accurate correction, 

using satellites, for instance.  For the minimal-imperfect repair less accurate corrections from 

other sources are usually performed. The quality of these corrections depends on the time 

since the last perfect repair, thus exhibiting a certain ageing property of information.  

 

We shall discuss for simplicity and possible practical applications only the stationary case. 

Equation (2) should be modified for the case under consideration: 

[ ]dxxEduuup
T

A
x

P
SP )(~)()(exp

1

0 0

Φ








−= ∫ ∫
∞

λ ,                                 (12) 

where )(~ xΦ is the value of the performance function in x  units of time after the last perfect 

repair (it is random now, because the minimal-imperfect repair is performed at random 

instants of time in the interval since the last perfect repair till current x ) and PT  is the mean 

of )(xFP . The following model for )(~ xΦ  can be considered 

[ ] dyyxduuyxduuxE
x

y

xx

),()(exp)()()(exp)(~

00

Φ











−+Φ








−=Φ ∫∫∫ λλλ .             (13) 

The first term in the right hand side of equation (13) gives (with the corresponding 

probability) the value of the performance function when no minimal-imperfect repairs had 

occurred since the last perfect repair. Obviously it is the same function as in (2). The second 

term defines under the integral the probability that the last minimal-imperfect repair had 

occurred in ],( dyyy +  and describes the model for the value of performance function ),( yxΦ  

as a function of time since the last perfect repair x  and since the last minimal-imperfect repair 

)( yx − . Indeed, dyy)(λ  is the probability that a failure (and the minimal repair) had occurred 

in ],( dyyy +  and the exponential function under the integral defines the probability that there 

were no more failures in ],( xy . The simplest model for ),( yxΦ  is 

)(
)0(
)(

),( yx
yC

yx −Φ
Φ

=Φ ,                                                   (14) 
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where )( yC  is the level of minimal-imperfect repair, performed at time y  after the last 

perfect repair. The function )( yC  is assumed to be monotonically decreasing and 

;0);()( >Φ< yyyC )0()0( Φ=C . 

 

Example 3 

 

Let { } { } 2121 ,exp)(;exp)( αααα >−=−=Φ yyCxx . Then 

{ } { }yxyx )(expexp),( 211 ααα −−−=Φ . Let also λλ ≡)(x  and pxp ≡)( . Then, performing 

simple calculations, using formulas  (12) and (13): 









+−

−
++

−
−−

=
pp

p
ASP λαα

λ
αλλ

αα
λαα

λ
211

21

21 2
.                             (15) 

If  ααα == 21  and 1=p , then (15) turns to )( αλλ +=SPA  which coincides with the result 

of example 1. 

 

Other models for ),( yxΦ can be considered as well.  Similar to equation (12) the stationary 

probability of exceeding the fixed level 0Φ  can be defined: 

( )dxxPuuup
T

P
x

p
SP 0

0 0

)(~)()(exp
1 Φ≥Φ









−= ∫ ∫
∞

λ , 

where ( )0)(~ Φ≥Φ xP  is obtained in the way similar to (13). 

 

4. CONCLUDING REMARKS 

Parametric availability is the natural generalisation of the usual binary availability. In 

combination with probability of exceeding the fixed level it can present all needed 

information on system’ s performance function for an arbitrary moment of time. The 

conventional availability shows the proportion of time when the system is operable. In 

parametrical case the expected level of operation is of interest and this can lead to 

understanding that for certain types of systems the periods of repair (when the system is 

down) can be not so important for the availability evaluation as they were in the binary case. 

That is why in section 3 we focus on considering the model for instantaneous repair. 

It was assumed for simplicity that )(xΦ  is a deterministic function, though the results, 

defining )(tAP and SPA , can be easily generalised on )(xΦ  being a stochastic process. The 
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generalisation on obtaining ( )0Φ≥Φ tP  and SPP  is not so straightforward. It can be 

performed without any difficulties only for the simple stochastic processes of section 2. 

 

The notion of gradual repair is rather fruitful for availability analyses of systems with 

considerable duration of repair. This type of repair, as it was stated before, usually includes 

adjustment (alignment) activities during which the system can be partly operable.  

 

In this paper only one sort of imperfect repair was considered: imperfect repair, based on 

combination of perfect and minimal repair. Models of general repair [4,5] can be treated in the 

frame of this paper as well. But there exist some mathematical difficulties on this way to be 

investigated in the future research.  
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