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ABSTRACT

A zeto-ons mixed intsger linear programming medel is developed for the scheduling of
ptojects undet the condition of inflation and under penalty and reward artangsments. The
effects of inflation on time-cost tiade-off cotves aie illustiated and 2 medified appicach to
time-cost trade-oft analysis piesentsd. Wumerical examples aie given to illustiate the model
and its propetties. The sxamples show that misleading schedoles and inaccurate project-cost
sstimates will be prodoced if the inflation factor is neglectsd in an snvivonment of high
inflation. They also show that award of penalty or bonus is a catal st for zatl y completion of
a project, just as it can be expected.

Kevwords: Cost cotves, time-cost trade-off anal vsis, mixed-integet linear programming,
linear approximation, due date

1. INTRODUCTION

The development of the Kelly-Walkst's Time-Cost Trade-off Model (TCTM) in the =atly
fitties (se= Kelly and Walket [15] and Kelly [14]) matked the beginning of the application of
formal optimization techniques in pioject planning and scheduling. Ever since, the TCTM has
gone thiough a lot of modifications, sxtensions, teviews and advanceime=nts (withess Davis
[3]. Dean [4], Elmaghtaby [7.9]. Moder [18]. Russel [19], Jolayemi [12] and Jolayemi =t al.

[13], for a few sxamples).

The TCTMs at= vsuvally in the form of linsar progtamuming (LP) medels. This makes them
sasiel to solve and, therefors, mote =asily adaptable than othet types of pigject-scheduling

medels - mainly tesouice-constiained medels (RCM) - which ave formuolated in tetms of
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integer of dynamic programming ot foims of bounded and implicit enumetation (se= Erengnc
et al. [10], Sprecher et al. [20], Bottchet =t al. [1], Gotiettez et al. [11], Brocket =t al. [2]
Demenlemesster ot al. [5.0]. Kolish [16.17], Vercellis [21] and Elmaghraby [E]). The ready
availability of powstful computsts and etfici=nt opstations tesearch (OR) codes almeost

everywhere makes the TCTM much easy to solve when problem sizes are large.

Another inadequacy of the sxisting models - excluding Jolayemi =t al. [13] and Jolayemi [12]
- is that they do not consider the inflation factor as an impottant inpuot, sither explicitly ot
implicitly. Ther= is hatdly any country in the wotld with an inflation-fres economy. The
sitnation is wolse in most developing countties wheies inflation is constantly on the iise.
Meglecting the inflation factor in an envitonment of high inflation tesults in undet=stimation

of ptoject costs and, consequently, project fail uie.

The new medel in this reseaich will have the inflation factor as one of its impottant inputs.
We shall demonstrate the effect of inflation on time-cost ttade-oft cutves (TCTCs) and on
time-cost trade-off analysis ITCTA). A medified appicach to TCTA is intiodocsd.

Futthermore, numetical examples will be given to illustrate the model and its propeities.

L EFFECTS OF INFLATION OMN THE TCTA., AND REDEFINITION OF
PROJECT COSTS

Before we discuss the effects of inflation on the TCTA and the TCTCs, we need to briefly

review the Kelly-Walket's TCT Cs.

21  The Kellv-Walker's TCTCs

The Kelly-Walkets TCTCs (Kelly and Walket [15]) are graphs of the project-activity costs
against project-activity dotations ot times. Conventionally, project activity costs are
classsifisd into two categories, namely: the ditect and the inditect costs. The ditect costs
consist of the costs of matetials, squipment, and divect labour while the inditect costs consist
of the cost of supsivision, capital, inventory, insutance, penalty for lats project completion
and bonuses for eatly completion. The ditect costs deciease with incizase in activity dutation

while the i nditect costs i hotease.

The ditect cost decre=ases with time= becanse the more the time available for the =x=cution of a

project, the less the costs of oveitime, workshifts, and extra labout. Costs of mateiials and
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=qui pment also decizase becanse good availability of time allows ordeting, procuiement, and

shipping of mateiials and equipment to be done thiough the cheapest but not necessatily the

EEI.ETCET InEans.

Howevet, when project ot activity dutation increases, mote costs ate incutted on capital

(tied-down capital | inventoty-insotance, pilt:cragc, detetiotation, and project supetvision.

Figores 1 and 2 shows the cost-graphs and the TCTC.
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Figure 1: Graphs of the direct, indirect and total costs
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Figure 1: The time-cost trade-off curve

The notmal cost is the minimom point on the total cost-cutve. [t is the minimom total cost of
the ditect and the inditect costs of an activity. The cottesponding activity dutation t* is the
notimal time. The *crash” time is the time that is technically possible for sxescuting an activity.
The “crash’ cost is the total cost tequited to achisve the crash peiformance time. The total-

cost culve is the cost-function to minimize.

To make the application of LP possible, the total cost cotve is approximated by a straight line
that passes thiough the "ciash’ point and the notmal point. The squation of the linsar
approximation is easily determined aftet determini ng its slope. This esquation constitutes the

objective function of the LP problem.

2.1  The Effects of Inflation on the TCT'Cs amnd TCTA

When theie is high inflation, the ditect costs - patticulatly costs of equipment and matetials -
incimase with time, inst=ad of deci=asi ng. The inditect costs increase with time, as befoie=.
Consequently, the total activity costs increase tapidly with time. The TCTCs that explain this

sitnation is shown below in Figore 3.

The ditect and the inditect costs may not cross if inflation is vety high. When they show
upwatd trends, as shown in Figure 3, the total cost cotve will not be convex and hence thete

will be no normal point. However, the “crash’ point can always be determined. Doe to the
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non-existence of the notmal time, the linear approximation to the TCTC and the cost slope
cannot be uniquely detetimined. Theiefoi=_ the TCTA cannct produce any teliable tesult and,

hence, the time-cost trads-off medel is not applicable unless the existing costs are vedefined.
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Fignre 3: Graphs of the direct, the indirect and the total cost curves nnder the
conditions of inflation

13 Redefinition of the activity costs

The i=definition of the activity costs involves bizaking the ditect cost into two paits (se=s
Jolayemi =t al [13]). The fitst pait, dencted the ditect cost A, is made up of costs of
=quipment and mateiials. Costs of labout constitute the second pait and is denoted the divect
cost B. The ditect cost A incieases with tising inflation. The effect of inflation on the divect
cost B is not t=adily appatent. Ln fact, the ditsct cost B may decieass with time - since the
meote the time availabls for the exscotion of a pioject, the less the costs of oveitime,

wolkshifts, and =xtia labour (hived temipotary labour].

To make TCTA applicable, we have excluded the ditect cost A frowm the graphical analvsis ot

costs. The graphs of the ditect cost B and the inditect cost is as shown in Figure 4.
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Fignre 4 now has the foiim of the Felly-Walket’s TCTCs. Theiefoi=, it can b= used foi the

TCTA. The linear apptoximation to the total cost cuive, its gradient, and equation are

deiived fioim Figure 5.
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3. MODEL FORMULATION

We first define the decision wmriables and parameters of the model before presenting the
mathematical medel. Our definitions and medel formulabion are based on activity-on-arcs
project networls,

3.1 Decision Variables

I'LI

The duration (in vears) for activikr (i, ).

The earliest stark-time {in vears) for ackivity (i, 7).

The completion time for activity (i, 7).

The earliest start-time for the project.

The total project complstion time in vears.

A binary varable, which is 1 if the project is completad in time ¢ and 0 othearwise.

3.2 Indices and Parameters

The project due date. It is the time officially agreed upon by the project owner
and his contrackor for the completion of the project.

The eatliest time that is technically possible for the completicn of the project.
Thus, £ < 4.

The constant constraint placed on the total project duration. 1t is the mosdmum
allemeable time for the completion of the project.

The instantanecus poink-in-time that the project is completed. t is cne of the
parkition points of the time interval from £ to A, The discretisation of ¢ will
male it peesible for us o formulate the integer component of cur medel. To
ensure that this discretisation does nob affect the accuracy of the solution to the
model, the constant difference between successive wmlues of ¢ has been defined to
be small.

The constant difference betwesn successive values of 1.

The reward or bonus in dddlars for completing the project in pericd ¢ before the
expiration of the due date d. We assume that B, decrenses as t increnses from £
to d with step-size €.



The penalty in dellars for completing the project in pericd t after the expiration
of the due date d. It is assumed that F increases o5 1 increases from d4-¢ o A
with step-size €.

An activity thot starts at node ¢ and terminates at node j of the project networl,
i less than j.

The cost slope or gradient of the linear approsdmation o the porticn of the total
oost curve that liss betvreen the normal and the “crash’ points with respect to
activity (7,70

The set of dll items and equipment needed for the execution of ackivitr (7,7). If
y numbers of an ibtem r are needed in node 1, each of the v items are included in
the set R; a5 a separate entity

The set of all nodes of the project, ie, 7= [i}L; :
The price of item r (equipment or materials) at node ¢ of the project network.

pi, =0 ifr € R. It is assumed that an ibem r neaded for the execution of
ackivity (,7) is procured at node ¢ just before the commencement of the ackivity
The set of dll activities (7, ;) of the project, i,7 € 1

The intercept made with the verfical axis by the linear approd mation to the
portion of the tobal cost curve that lies betwesn the normal and the “crash’ points
with respect to ackivik (7,70

The normal time for activity i1, 7).

The “crash’ time for activit (i,7).

The last node of the project™ nebworl.

Annual inHation rake. It can be continuous or discrete, but we shall sssume o

continuous inHation mbe.

3.3 The Model

The linear appradmation to the total cost curve for an activity (4,70, ((4,7) € 4) is
k;;+ ;5755 Theretore, the sum of the costs of labour and indirect costs for the project is

D U + gzy)

lijesA

Since the inHakion mate is @, the cost of ibem r required to be bought at node ¢ (at the
beginning of activity (4,7)) time T; from now is et The total oost of all itemns needed
for the execution of the whele project is

Z Z D

1T Ry

The first term of Tavlor’s expansion of this non-linear term (see Russel [19] Jolayemi[12],
and Jdmvemi et al [13]) is

Z Z i (1 4+ 815

iEV reRy



Therefore, the linearized total cost of executing the project is

Z (ki 4 g7 ) + Z Z 146100

iij g i€V rER,

Lt the fime-interval from £ to A be partitioned into m equal smaller interwals. Let &
be the set of the partition-points (bhe time-points including points £ and A) E + ¢, E +
2e, .., E 4+ (m — 1k, A, where ¢ is as defined earlier.

Define:
P=[t: E=t=dte G}
and
W=[t:d=t= At G}
The bonus awarded the contractor for completing the project before the expiration of the

dus date d 15
Z Bz
D

The penslty awarded against the contractor for not completing the project before the
expiration of the due date is

Z Pz

=

Therefore, the total cost to minimize (the objective function) is

S (st + 3.y m(1+€0)-% Bia+ Y Ba
g

i, A iEV rER, HETE

For each activity (7,7, the difference between the earliest event time I} and the labest

L]

event timme I); must be, at least, as large as 7;;. Hence, the hirst constraint is

a3
Tidz;—T;=0 faall (i,7)

The normal time L;; must be greater than or equal to the scheduled activity duration x;;.
Therefore, the second constraint is
x: = L forall I:z',j'l

J} — ‘l‘l
The scheduled activity duration must be greater than or equal to the “crash™time I;;.
Therefore, the third constraint is
= —I

;o forall (i, 70

The time interval betvreen the earliest time I that the project begins and the completion
time I, must be less than or equal to A, Therefore, the fourth constraint is

T, T, < A



The campletion of the project should result in the sward of a penalty or a bonus (but not
both ). Theretore, the sixth constraint is

—E . E
Tizf2+—1.23
P

1
Miote that 7€ has besn used here instend of € to ensure that the neighbourhood of { covrars
only the mid-points betwesn t and + — 1, and t and t 4 1 respactivelv.

Putting evervthing together, the resulting mived integer linear programming medel (MILP )

is:
Minimize z = % (ky +9575)+ 3 Y B (1+r3r.._ZEH+ZH_, (3—1)
ijed iEV R HSTH
Subject to
Ti+x;—-T; < 0 foral (i,5)€4 (3-2)
—1;; = =I; forall (i,71£4 3 -4
I —-17 = A (3 —5)
Z Z = 1 |:3 -
dwid
£ € -
-5 = th—ruig (371
2 = 2

T3, 15, 15,1, = 0 for all (i,/1€dand alli,j €V, 2 =0crlforallt £ Gand p,, =0
for all v £ R,

To reduce the constraints of the MILP, we use the transformation w; = =; — [; (see
Jolayemi et al [13] and Jolayemi [12] to obtain the following transformed MILP medal:

Minimize =, = Z (as; + g5t -J.}.+ZZPJ E1+ﬂII_ZE* *+ZH_, T _ R

fijied ET=i L =
Subject to:
Ti+y; —T1; = —L; ferall (i,5)£4 (3-9)
u; = L=l forall (5,712 4 (3—10)
I.-T < A (3—5)
Z:* = 1 (3—6)
G
£ €
-5 £ 3 ta-T. = (3-7)
2 = 2

1d



;'-j_;i:l:l'r:.:ll-;i:l

T, z0fcrall (i,j) £ dandallijclV and I =0

=0cr lfcrall 2 £ (&,

ai; = kj_;i + Hj_;ijlj_;i and g = d.

4. NUMERICAL EXAMPLES

4.1 Proklem

Table 1 in appendix A shows the list of four condensed activities of a hypothetical research
and development project and the input parameters of the comresponding LP problem. The
materials neaded ab the beginning nodes of each activity and their costs are given in table
2of appendix A, Time estimabes are in vears. Table 3 in the appendix pressnts data on
penalties and bonuses.

4.2 Solution

The transformed model for this numerical excample 15 presented in appendixc B, The
LIMND O software program was used to obiain the cptimal sclution to the MILP problem.
The optimal mlues of the decision wariables are shown on the arcs of the netwocl of Fig.
6 and in Table 1 below:

11



The optimal event times are shown on the nodes. The numbers in braces are the “crmsh”
and the normal times. The values of the crginal variables, the x;;%, have been obtained
b reversing the ariginal transformation. To minimize the total project cost, the ackivity
durations on the arcs where procurements of materals and equipment are made tale the
walues of their respective “crash” time. On the other hand, the activity dumbions on
the arcs that enter the node (node 5) where no procurement is made tale the wmluss of
their respective activity normal times. With this optimal schedule, the optimal project
completion time Tp is 1.06.

If there had been no inHation, the optimal walue of T, would hove been 2.0 or as close to
2.0 as possible for the objective function to be a minimum. This result shows that when
there is inHation, a contractor must complete his project very early (earlier than the due
date) to reduce the project cost.

The hvpcthetical contrackor in this encample is ovarded o bonus of $200 fa completing
the project before the due date. The tobal project cost is $800. 78,

Table 1: Optimal solution to the numerical exampls.

Decison  Optimal Decision vanables Optimal

wariables values (binary) mlues
I1z 0.1 Z10 1
o Q.2 1o J
Toy .16 o114 J
Tam 0.6 oim J
Tyim 0.3 o1m |
I d.d Zma a
15 d.1 Zna i
I 0.3 &4 d
T, d.2% g i
ITw 1.06 &= d
a0 a

4.3 Further Study of the Models Structure

4.3.1 Cases

We shall consider the following cases for a more debailed studyv of the model’s structures.

Case 1: Bonus arrangement onlyv. Mo penalty.



Case 2: Penaltyr arrangement onlyv. [Mo bonus.

Case 3: [o penalty, no bonus, and no inHation.

Case 4: [o inHation, but there is penalty and reward.

To compare the results here with the results in section 4. 2, we have used the same input
data used in that section. To save spoace, we will not present the corresponding medels

for the 4 cases. The optimal solution to the LP problem under each case is shown in table

2 balow.

Table 2. Optimal solutions to the numerical examples illustrating each of the coses.

Decision | Optimal values of the decision wmriables
variables | Case 1 Cose 2 Caosed Comed
T1o 0.1 0.1 0.5 0.5
Tz Q.2 Q.2 Q.8 Q.2
Ty d.1a 0.1a Q.7 (.45
T 0.6 0.8 0.6 0.4
Tym 0.8 a.a 0.8 0.15
n 0.0 0.4 0.0 0.d
I; d.1 d.1 Q.5 Q.5
I3 0.3 0.3 14 Q.7

I Q.26 (.26 1.2d (.85
I 1.06 1.06 240 11
a1m 1 1 1 1
oo d d d d
214 d d a d
o1 d d a d
o a a a a
IZng d d a d
Zn d d d d
Z4 a a a a
S d d a d
Z= a a a a
= d d a d

Bonus/ (bonus) (bonus) (bonus) (bonus)

penalty | $200.00  $200.00 [Mone $200.00

Dbjectiwe

function | $300.79 TR1100.79 Y9763 §7T0.4

|:ND‘|:E' that where bonus is indicated, the wmlue of the bonus is subtracted from the total
project cost to give the walue in the last powr).

13



4.3.2 Comments on the results obtained for sach case

Case 1:

The results here show that the opfimal wmlues of activity and project durations, and total
costs, are the same with the values obtnined in the encample of section 4.2, The reasons
tor this is ensv to see.  Due to inHabion, the durations of activities that enter the nodes
where procurements are made have to take the wmlues of their respective “crash” time for
the total cost to be minimum.  Also, the wmlue T = 1.06 falls within the interwnl where
the highest wmlue of bonus is awarded for early project completion.  This value of T
still allowrs x3p and 14, to tale their normal time values of 6 and 3 espectivelr. The
conclusion from this is that inHation and/or penalty and reward arrangements male(s)
the execution of a project to be accelerated.

Case 2:

The optimal values obtained for the decision vanables are the same with those obtained
in case 1. This is so for the same reasons given in case 1 in relabion to inHabion., That
the optimal project completion time I7) = 1.06 is far less than ¢t = 2.2 - the time at which
penalty dharges against the contractor start - shows that penalty charges against project
completion is not at all consequential in this case. InfHation is the major factor for the
optimal scheduls produced. The optimal total project cost is higher here than in cass 1
($1000.79 instend of $300.79) because no bonus is awarded for early project completion,

unlile in case 1.

Case 3:

The optimal mlues differ greatly from those obtained in the fwo previous cases, including
the example in section £.1. The optimal activity durations are the normal time values
for their corresponding activities. The optimal value of project duration Ty is 2.0 and
this is the highest wmlue cbiained for T5 in all the eamples.

The walues of the cbjective funchion, including the costs of materials is $976.3 (remember
no bonus).  Thess results show that mislending schedules and inaccurate project ocost
estimate will be produced if the infation factor is neglected in an environment of high
inHation.

Case 4:

The optimal project dumbion in this case is I = 1.1. This value is not different from
those obtained in coses 1 and 2 and the example in section 4.1, However, the optimal
walues obtained for the asctivity dumations here are different from any of those obtained in

1+



the previcus cases. The optimal values for =up and =, are no longer their corresponding
normal-time values, and the optimal values of 40,703 and 1o, are nolonger their respective

‘crash -time wmlues.

The inclusica of penalty and revward arrangements hos produced a shorter value of project

duration here than in case 3. This showrs that penalty and reward arran gements encourage
earlv project completion in an inHation-free environment.

5. CONCLUSION

The meodel developed in this paper will find ussful applications in construction industries.
It will also be useful in manufacturing industries, parficularly in the areas of research and
development , plant expansion, rehabilibation and equipment maintenance.

This is the third project scheduling model in literature (see Jolavemi et al [13] and Jo-
layermi [12]) that has ever explicitly considered the inHation factor as an important in-
put. It is also the only model of the fime-cost trade-off firpe that incorporates penalty

and reward arrangements. The model constitutes a major advancement on the popular
Ieallv-Walleer’s model.

The ready awmilability of many efficient commercial software paclnges like spreadsheets,
GANMS, Lindo, 3A5-0R, CPLEX and OSL that can be used to soclwe the model malkes it
verv adapbable and applicable.

15



APPENDICES

APPENDIX A.

INPUT DATA FOR THE NUMERICAL EXAMPLES

Table 1: Project activities and estimates of input parametens.

ﬂ.l.‘.'ﬁTif_‘l.‘I:i', _;I'] Jn.'j_:i o] Lj_:i I
I:l,?] ol -3 05% 041
(2,3 70 -5 09 02
I:?F-l_-] 6s =7 07 d.16
(3,5 40 —8 06 004
(4,5) 55 -+ 08 015

Table 2: Nhaterials needed at the befinning node ¢ and their costs

Tvpes of materials needed and costs in dollars.
1 2 3 1 5 (i 7 Tokal
Medel (2) (3) (7) (8) (1) (6) (5) ocost (§)
1 4 5 - 3 g - 1a 173
2 3 3 4 G 3 g 199
3 5 i 5 - T 1 I i
1 i 3 2 7 5 1 5 lg2

The wmlue of the continuous inHation index is .12

Table d: Completion time (partition points) and corresponding bonus/ penalty
awarded.

Before due date After due date
Completion time | Bonus | Completion titne | Panalty
1.4 00 2.2 1540
12 130 24 1740
14 150 2.6 180
li 1443 2.8 214
13 1240 3.4Q 230
24 104
E=2d=24

lg



APPENDIX B.

TRANSFORMED LP MODEL FOR THE NUMERICAL EXAMPLE.

OE3. 24 — Bygn — Dymy — Ty — Bum
+20.475 4+ 18,4407, — Xz — 180z, -
=160z , — 140z 5 — 1202, 2 — 100za,
+150r0 2 4 170xo g + 190x0s

+210r2 + 23030

IMinimize z =

subjact o
vz —dn = =1
Tty —-T3 = 02
I 4oy, -1, = -—0.1&
Iy — Ty = —001
I 4y —Tp = —0.15
v = 04
ym = 0.7
oy = 054
v = 0.50
v = 065
Lh-Ih = 3

Sint izt autastazt ottt met 22t 3o = 1
0 + 1.2:1: + 1-"I::1.-|. + I.E:Lﬁ + 1.8:1_3 + 3':':-:.: + 33:-:: + 3-]::-:.4

+2.E::_ﬁ + 2.8:2_34-3.0:'3_.3—1":, : l:l].
a0+ 12z2+1tca+ 1616+ 18024+ 2020+ 2224+ 24,
+26zms + 28me4+30zm0—-T = 01

ij

0 faal (724,77 =0,zz=0 a 1 fordl t£&

0 for i=2,3,4,5.

2
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