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ABSTRACT 
Data collected on the physical, biological or man-made world are often highly correlated, 
posing the question of whether fewer variables would contain almost as much information. A 
crude solution is simply to look at the Pearson correlation matrix and omit one of a pair of 
highly correlated variables. A more systematic method is to condition on one or more 
variables, and observe the resulting partial covariance matrix. If the variables have little 
variance after the conditioning, then the conditioning variables contain most of the 
information of all the original variables. Paralleling the usual tests applied in judging how 
many principal components are sufficient to represent all the data, we can use the amount of 
variance explained by the conditioning variable(s), as a measure of information content. The 
paper references earlier work in this area, explains the computation and includes examples 
using published data sets.  The approach is found to be highly competitive with using 
principal components, and has the obvious advantage over principal components of simply 
omitting some of the original variables from further consideration. The method has been 
coded in Visual-Basic add-ins to an Excel spreadsheet. 
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1.   INTRODUCTION 

In studying physical and social phenomena, it often happens that two observed variables are 

highly correlated with one another.  This immediately opens up the question of whether there 

is any need to observe the values of both variables, or is it sufficient to collect data on just one 

or other. Indeed, often several variables are observed and found to be correlated, and it is 

useful to know whether collecting data on a smaller number would be sufficient. 

 

When we are interested in a single dependent variable, and all other variables are examined as 

predictors of the dependent variable, well-known statistical techniques such as analysis of 
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variance or step-wise multiple regression can be applied (Neter, et al., 1996). On the other 

hand, if we seek a general understanding of the data without an immediate differentiation into 

dependent and independent variables, the applicable statistical techniques are less well known.  

A common approach is to use the multivariate method of principal components, or the 

extension of this into factor analysis. Unfortunately this technique does not address directly 

the basic question of whether all the original variables yield much more information than just 

some sub-set of them. 

  

In this paper we present a statistical method that measures the amount of information lost by 

omitting one or more variables from a set of correlated observations, and thereby identifies 

which variables are best retained. This is primarily an ex-post analysis when we are simply 

interested in reducing the total number of variables to allow the underlying phenomena to be 

understood more easily. However, the method can also be used ex-ante on a preliminary 

sample of observations to assess the loss in information if data on all variables is not collected 

for the main analysis.   

 

Although the technique is known to experienced statisticians, it is not well known in the 

operational research community.  (We reinvented it after failing to find to find any references 

in the literature, including recent texts on multivariate statistics).  This article describes the 

method as we saw it, and refers the reader to our routines, coded in Microsoft Visual Basic, 

that can be used in an Excel spreadsheet. 

 

The next section summarizes previous literature in this area, and Section 3 introduces 

notations and definitions. Section 4 explains our method that uses partial covariance to 

identify which variables are most significant.  Section 5 explains the computation, and Section 

6 describes tests that can be applied to decide how many variables sufficiently represent the 

information in all the data. Section 7 summarizes the contrasting approach of principal 

components analysis.  Sample results are given in Section 8. 

 

2.   PREVIOUS RESEARCH 

The earliest major article on this subject dates back to 1967 [Beale, et al.] and has often been 

referenced in the context of multivariate regression, where one variable is treated as dependent 

on the other variables, and the exercise becomes one of choosing just a sub-set of the 
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independent variables as sufficient to explain most, or all, the variance in the dependent 

variable. In fact, the article by Beale et al., which gives a limpid expression and solution of the 

problem in multivariate regression, also points out how their method can be modified easily to 

the situation where none of the variables is considered as dependent on the others.  Then the 

problem, which they describe as ‘Interdependence Analysis’, becomes precisely the problem 

considered in this paper.   

 

If one pursues the thread of articles on selecting a subset of dependent variables in 

multivariate regression, one can trace back to at least 1960 [Efroymson] and forward through, 

for example, Garside [1965] Hocking and Leslie [1967] and a commentary by Beale in 1970, 

followed by numerous more recent articles.  On the other hand, the thread on 

‘interdependence analysis’ is very thin.  Jolliffe’s interest in principal component analysis led 

him to explore the idea of forming principal components with a sub-set of variables from a 

larger set of correlated variables [1972, 1973]. The simplest version of this is simply to use 

the first variable in each of the first few principal components, and omit all other variables 

from subsequent consideration.  The general problem of forming principal components from 

only a sub-set of the original variables continues to be explored.  A recent web site [Mori et al. 

2000, 2002] gives references and a good summary of those methods. 

 

It is not until McCabe’s article [1984] that the idea of selecting a subset of variables from a 

larger correlated set, without any consideration of a dependent variable, is addressed as the 

central goal. McCabe uses the name “principal variables”.  The Fortran program that he wrote 

to test the method benefits from ideas used in the 1967 program of Beale et al., McCabe 

having come to it via his earlier work in discriminant analysis [McCabe 1975].  Recently he 

has made available on his web-site downloadable Fortran routines callable in the statistical 

software packages IMSL and SAS [McCabe, 1998] to select principal variables from a set of 

correlated variables. 

 

Jolliffe’s text on principal components [1986, pp.108-113] compares the first variable of the 

principal components with the variables selected by McCabe’s method of principal variables, 

though the emphasis is still toward choosing a sub-set of variables from which to form the 

principal components. The results on two real data-sets using a number of different statistical 
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criteria for “best” are inconclusive. The first few variables selected by either approach are the 

same, but there is divergence if more variables are to be included in the chosen sub-set. 

 

A few years ago a real-world multi-criteria analysis by Jenkins [2001] elicited a number of 

criteria (variables) with which participants in the workshop were very comfortable, but were 

obviously highly correlated. While not a problem in that particular analysis, it posed the 

general academic question of how to deal with a number of highly correlated criteria 

(variables).  A literature search (since found to be inadequate!) found references only to 

choosing a subset of the independent variables in multiple regression, so we invented a 

method [Jenkins and Anderson, 2000] that we later found to be a simple recasting of 

McCabe’ s approach of principal variables.  The method has proven interesting and useful 

[Jenkins and Anderson, 2002, 2003] and, since we can offer Visual Basic routines that can be 

used in Microsoft’ s Excel spreadsheet software, we describe here our development and coding 

of this very useful technique.  

 

3.   NOTATION AND PREPARATION 

Consider a number of variables i = 1 .. m that are observed on a number of cases j = 1 .. n, 

with datum xij assumed to have an unique scalar value.  The observations may be represented 

by matrix X |xij , i = 1 ..m, j = 1 .. n| or row vector variables Xi , i = 1 .. m. Working simply 

from the value of X, we are interested in inferring whether one or more of the variables i = 1 .. 

m are so closely correlated to the others that using only a subset and ignoring the rest of the 

variables would result in little or no loss of information. For convenience of notation, we 

allow an arbitrary reordering of the variables, and will write about omitting variables i = 1 .. p, 

and retaining variables i = p+1 .. m. 

 

Since the measurement scale of variable i does not enter into our consideration, each variable 

can be conveniently normalized to have mean 0, simply by subtracting the mean of the 

observations from each observed value.  Similarly we can normalize the variance and standard 

deviation to 1 by dividing each xij by the standard deviation of Xi.  That is, x'ij = (xij - µi) / σi 

where µi and σi represent the mean and standard deviation respectively of the observed Xi. To 

simplify notation, we will assume that this transformation has been carried out on all the data, 

and from now on will use xij to denote the normalized variables. 
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With all variables now standardized, there is essentially no distinction between them.  The 

only special case that could arise would be if all elements of some original Xi had the same 

value.  In this case the variance would be 0, and our normalization would be mathematically 

undefined.  But if some vector Xi has all elements identical, then it contains no information.  

Then, after omitting any such uninformative variables, the variance can be used as a measure 

of information.  With all variables initially standardized to a variance of 1, each has the same 

information content.  Then the variance of the i = 1 .. m variables sums to numeric value m, 

and this total variance can be used as a measure of the information content in any subset of the 

m variables. 

 

This total variance as a measure of information content is exploited in the procedure below. 

We use the approach of conditioning the observed value of one variable on the observed value 

of another.  That is, a value xi’j observed jointly with a value for xij is adjusted to a value 

calculated as if xij were at the mean value of Xi.  If such an adjustment for every xi’j, j = 1 .. n, 

adjusts xi’j to the mean value of Xi’, then the partial variance of Xi’ conditioned on Xi is zero.  

Since by this process all the information (variance) of Xi’ is removed, it means that all the 

information is already contained in Xi , so variable Xi’ is redundant. 

 

4.   SELECTING VARIABLES BASED ON PARTIAL COVARIANCE 

We now outline the procedure used to select variables i = p+1 .. m to retain as representing 

most of the information in all m variables, and identify those variables i = 1 .. p that contain 

little additional information.  It should be emphasized that if two variables Xi and Xi’ are 

perfectly correlated, then whichever we choose first makes the second redundant.  In other 

words, it is not intended to say that some variables are inherently more informative than 

others.  We are simply trying to identify some sub-set i = p+1 .. m of a set of inter-related 

variables that contains as much information as possible. Some completely different sub-set of 

m-p variables may contain almost as much information.  

 

The partial variance of a variable, denoted σii.i’’ is the variance remaining in variable i when 

the effect of variable i’’ is removed.  This is equivalent to calculating the value that each xij 

would have if xi"j were at the mean value of Xi’’. If variable i is perfectly correlated with i’’, 

then conditioning variable i on i’’ will leave σii.i’’ with a value of 0.  (Similarly, σi’’i’’.i will be 
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zero.)  Conditioning on two or more variables is a simple extension of the process. Thus if, in 

an arbitrarily ordered set of variables X1 .. Xm, conditioning on Xm-1 and Xm leaves zero 

partial variance in X1 to Xm-2, then the information contained in all the variables X1 .. Xm is 

contained in Xm-1 and Xm.   

 

If all m variables are normalized to have unit variance, then the sum of their variances is 

simply m. Thus if i = p+1 .. m are the variables retained as representing most of the 

information of all m variables, and i = 1 .. p are omitted, ideally the variance explained by 

variables p+1 .. m will be m, and the partial variance of variables 1 .. p will be zero. Since 

perfect correlation is unlikely in any real data, a residual partial variance that is small, rather 

than 0, is an acceptable goal.  We use the proportion of variance explained by the selected p+1 

.. m variables, or alternately the residual partial variance in the remaining p variables, to 

decide how many variables reasonably represent all the information. 

 

5.   COMPUTATION 

The covariance between two random variables Xi , Xi’ is given by the joint moment 

Cov (Xi , Xi’) = E{[Xi - E(Xi)] [Xi’ - E(Xi’)]} = E (Xi  Xi’) - E (Xi) E (Xi’) = σii’  

Now represent the variance-covariance matrix derived from the m rows of data matrix X as 
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Consider partitioning the m variables into two sets, with appropriate relabelling a snecessary, 

so that i = p+1 .. m are  the variables retained as representing most of the information of all m 

variables, and i = 1 .. p variables are to be omitted. The variance-covariance matrix V can be 

partitioned as 

             V =  
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where V11 represents the variance-covariance matrix of variables i = 1 .. p, V22 the variance-

covariance matrix of variables i = p+1 .. m and V12 matrix of covariances between these two 
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sets of variables. Then the partial variance-covariance matrix of  X1 , X2 , .. Xp  given Xp+1 .. 

Xm is V11.2 = V11 - V12 V-1
22 V21 (Morrison, 1976 p.92). The trace of V11.2 represents the 

remaining variance of variables i = 1 .. p after conditioning on the selected variables i = p+1 .. 

m. If the trace of V11.2  is small, then variables i = p+1 .. m retain sufficient of the information 

(measured by variance) to represent all the original variables i = 1 .. m.  

 

Once the variance-covariance matrix V has been computed initially for X, all subsequent 

calculations are manipulations on V. Since, in fact, we have an initial step of normalizing all 

variables to mean 0 and variance 1, there is no difference between the initial variance-

covariance matrix V and a standard Pearson correlation matrix, which therefore forms a 

convenient starting point for our procedure. 

 

Having discussed how to compute the partial covariance matrix and how to monitor the 

amount of variance explained by the selected conditioning variables, we still need to consider 

how the conditioning variables will be selected.  (It is worth pointing out that the procedure 

can be controlled by the analyst’s knowledge of what the variables represent, and can serve as 

a diagnostic of how much information is retained or lost by including or omitting specific 

variables.  However, here we are concerned only with a mechanistic procedure having the goal 

of retaining most information with the least number of variables). 

 

We have experimented with two approaches, the simpler one referred to as a “myopic” or 

"greedy" procedure, while the second is comprehensive.  In the myopic procedure, we start by 

taking each of the m variables as the conditioning variable, and find which one has the 

maximum information content (as computed by the trace of V11.2).  With this first variable 

now selected, we try all the remaining m-1 variables to find which best represents the residual 

information content.  This can be continued until there is only one residual variable, and all 

the other m-1 are conditioning variables. 

 

While this myopic procedure is computationally simple, unfortunately if conditioning is to be 

on 2 variables, we cannot be sure that the first variable selected will be one of the best two 

variables, that the best 2 will be a subset of the best 3, and so on (Jenkins and Anderson, 

2000). The alternative is to try conditioning on all combinations of 2 variables, all 

combinations of 3 variables etc. When the total number of variables m is small, it will be 
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worthwhile trying all mCm-p combinations for all values of p, to find which m-p variables best 

represent all the data.  

 

Section 8 includes illustrative results using both the myopic and the comprehensive approach 

to selecting the subset of conditioning variables.  Murray Anderson has coded each procedure 

as a Visual Basic add-in to an Excel spreadsheet (Roman, 1999) that uses a correlation matrix 

as initial input.  The two procedures, both of which include in the output measures of the 

variance explained by the selected variables, can be downloaded from an appendix to this 

paper on Larry Jenkins’  website (Anderson and Jenkins, 2002).  The first add-in is named 

Myopic, and selects all m variables sequentially in a single run.  The second add-in, named 

PickBest, asks the user how many m-p variables to use to explain the variance.  Output 

consists of results with m-p explanatory variables on a new Excel worksheet. The output lists 

all possible m-p combinations of the original variables, in decreasing order of total variance 

explained. 

 

6.   HOW MANY VARIABLES SUFFICIENTLY REPRESENT ALL THE DATA? 

We discuss in this section some heuristic and statistical rules to help decide how many 

variables might satisfactorily represent all the information contained in the original variables.  

Without any special knowledge of what each variable measures, our guidelines depend strictly 

on statistical tests.  The simplest approach focuses on the proportion of total variance m 

contained in the subset of variables.  The other approach considers the residual (partial) 

variance in the variables omitted. The heuristics and statistical rules are all drawn from studies 

in principal components and factor analysis (see Section 7), but are equally applicable to our 

analysis. 

 

Rules based on the variance explained by each variable: 

 

1. Base the stopping rule on the percentage of total variance explained by m- p variables 

Our procedure identifies, for each value of p, the sub-set of variables that explains as 

much as possible of the total variance m.  Then we examine the percentage of total 

variance explained by m-p variables, and decide when the proportion is large enough that 

it is not worth retaining more than m-p variables. A graph plotting number of variables 

omitted against proportion of variance explained can easily suggest an appropriate 
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stopping point. This was named the scree test (Cattell, 1966, cited in Bernstein, 1988 

p.174) 

 

2. Base the stopping rule on the percentage of remaining variance explained by a variable 

In this case we include an additional variable as long as it explains a large proportion of 

the variance remaining. This is simply a variation on rule 1. 

 

3. A variable can be omitted if it explains less than 1 unit of the remaining variance 

The logic of this rule is simply that if adding another variable cannot bring to the analysis 

at least as much variance as it explained as a stand-alone variable (1 unit), then its 

contribution to total explanation is inadequate.  The heuristic is usually attributed to 

Kaiser (1958, cited in Dillon and Goldstein, 1984 p.48). 

 

Rule based on the partial correlation matrix: 

There are statistical tests of significance that can be applied to the partial correlation matrix 

remaining after conditioning on the variables p+1 .. m.  They all test whether the matrix is 

significantly different from the identity matrix, for if there was 0 correlation remaining 

between the variables, the partial correlation matrix would have 1s on the principal diagonal, 

and 0s everywhere else.  In other words, all common factors would have already been 

extracted by the conditioning variables p+1 … m.  The tests of significance depend both on 

the total number of variables m, and the total sample size n.  While m is implicit in the 

correlation matrix, n needs to be known independently as the size of the sample from which 

the original correlation matrix was calculated. Bartlett (1950, cited in Bernstein, 1988 p.175) 

developed a chi-square test of whether the partial correlation matrix is significantly different 

from the identity matrix as follows:  

Calculate χ2 = -[n - 1 - (2m +5)/6] ln|V|, where n is the number of cases, m is the number of 

variables and |V| is the determinant of the partial correlation matrix for the 1 .. p variables, 

conditioned on variables p+1 .. m. The degrees of freedom for this computed χ2 is m(m-1)/2. 
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7.   PRINCIPAL COMPONENTS ANALYSIS 

In contrast with our approach of omitting variables that do not bring significantly more 

information than is already contained in our selected p+1 .. m variables, principal components 

(PC) analysis retains all the original variables and forms artificial variables that are linear 

combinations of them.  We mention it here briefly since the method is well known and its 

results provide a valuable benchmark against which to compare our approach. PC analysis 

was conceived as a method of trying to identify a few underlying factors that reasonably 

explained most of the variability in a set of related observations.  

 

The first PC is a weighted sum of all the input variables, calculated so that as much as 

possible of the variance of all the raw variables is contained in that component. With variables 

Xi i = 1 .. m, then  

PC(1) = w(1)1X1 + w(1)2X2 + … w(1)iXi + … w(1)mXm 

where the weights w(1)1, w(1)2, .. w(1)i, … w(1)m have been chosen to maximize the variance of 

PC(1) - the first principal component - subject to the constraint that Σi=1
m w2

(1)i = 1 (Dillon and 

Goldstein, 1984). 

 

After this first component is extracted, the raw variables have some residual variance.  Then a 

second principal component, PC(2), is extracted to include as much as possible of this residual 

variance.  To extract the maximum remaining variance, this second PC will be orthogonal to 

the first. The process can continue until m principal components are extracted, and these will 

always suffice to explain all the variance in the original data. However, since PC analysis 

maximizes the reduction in the variance at each step, often just the first few components 

contain most of the information in the original data. Technically, the PCs of matrix X are the 

eigenvectors of the sample covariance matrix, while the eigenvalue corresponding to each 

eigenvector is the amount of variance explained by that eigenvector.  Thus many common 

matrix manipulation programs can be used to calculate the principal components.  

 

8. ILLUSTRATIVE RESULTS 

To illustrate our approach, we start with a small artificial example.  The data are listed in 

Table 1, with the correlation matrix in Table 2. 
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Table 1.  Artificial data       

Case j X1 X2 X3      

1 2.30 3.30 2.07      

2 1.50 0.50 3.55      

3 2.20 3.20 2.08      

4 1.80 2.30 2.47  Table 2.  Correlation matrix for artificial data 

5 0.50 2.60 1.48   X1 X2 X3 

6 1.30 2.80 1.82  X1 1.000   

7 1.40 2.10 2.37  X2 0.366 1.000  

8 0.30 1.80 1.92  X3 0.326 -0.760 1.000 

 

Though it is hardly obvious from the correlation matrix for this data, any two of the three 

variables contains all the information of the three variables. (X3 was calculated by X3 = 0.6X1 

- 0.7 X2 + 3.0). X2 alone can account for 57.07% of the variance of all three variables, X3 

alone for 56.14%, and X1 alone for 41.35%. Any two will account for all the variance. By 

comparison, the first principal component can account for 58.72% of the variance of all three 

variables, (which is barely more than 57.07% with the most informative variable) and of 

course two principal components account for all the variance. 

 

For our second example, we start simply with a Pearson correlation matrix. The matrix is 

taken from an example in the SPSS manual related to smoking (SPSS, 1999, p.318) but we 

simply label the variables 1 to 12. 
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Table 3.  Correlation matrix of variables characterizing different smokers 

 Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 Var12 

Var1 1.00            

Var2 0.85 1.00           

Var3 0.81 0.78 1.00          

Var4 0.82 0.81 0.79 1.00         

Var5 0.06 0.12 0.14 0.12 1.00        

Var6 0.11 0.16 0.19 0.22 0.80 1.00       

Var7 0.10 0.17 0.24 0.24 0.74 0.70 1.00      

Var8 0.12 0.21 0.22 0.30 0.71 0.73 0.71 1.00     

Var9 0.04 0.23 0.09 0.20 0.56 0.60 0.49 0.58 1.00    

Var10 0.13 0.28 0.14 0.21 0.36 0.34 0.24 0.27 0.46 1.00   

Var11 0.14 0.27 0.20 0.27 0.41 0.43 0.34 0.36 0.51 0.80 1.00  

Var12 0.04 0.20 0.10 0.22 0.58 0.61 0.61 0.59 0.80 0.61 0.70 1.00 

 

Table 4.  Comparison of most informative fewer variables with PC analysis for smokers 

Variables selected  % total variance explained 
by best m-p variables 

% total variance explained 
by same number of PCs 

V12  33.59% 45.19% 

V1, V12  59.14% 70.22% 

V1, V5, V12  70.82% 81.75% 

V1, V5, V10, V12  78.24% 86.33% 

V1, V6, V7, V9, V10  83.09% 89.27% 

V1, V5, V7, V8, V9, V11  86.50% 91.80% 

V1, V3, V5, V7, V8, V9, V11  89.51% 93.82% 

V1, V3, V5, V7, V8, V9, V10, V11 92.47% 95.48% 

V1, V3, V5, V6, V7, V8, V9, V10, V11 94.86% 96.88% 

V2, V3, V4, V5, V6, V7, V8, V9, V10, V11 97.01% 98.09% 

V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12 98.56% 99.16% 

 

From the results in Table 4, we see that the “myopic” approach would be valid for up to 4 

variables, but would not select the best 5 variables, and that V1, which forms part of the most 

informative sub-set of 2 through 9 variables, is omitted if we use 10 or 11 variables. 

 

As a third example we present results for a fairly large data set used to illustrate factor 

analysis in the recent release of the SPSS software for statistical analysis (SPSS, 1999, p.324), 
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and consists of 11 population-related variables for 74 countries.  Table 5 shows the initial 

correlation matrix. 

 

Table 5.  Correlation matrix of population-related data for 74 countries 

 urban lifeexpf literacy pop_incr babymort birth_rt death_rt log_gdp b_to_d fertilty log_pop 

urban 1.000           

lifeexpf 0.685 1.000          

literacy 0.526 0.867 1.000         

pop_incr -0.204 -0.507 -0.642 1.000        

babymort -0.667 -0.975 -0.855 0.509 1.000       

birth_rt -0.473 -0.801 -0.824 0.837 0.810 1.000      

death_rt -0.319 -0.470 -0.298 -0.303 0.463 0.076 1.000     

log_gdp 0.734 0.829 0.673 -0.499 -0.817 -0.725 -0.147 1.000    

b_to_d -0.022 -0.186 -0.361 0.879 0.179 0.608 -0.598 -0.295 1.000   

fertilty -0.387 -0.751 -0.823 0.831 0.754 0.967 0.103 -0.599 0.595 1.000  

log_pop -0.315 -0.265 -0.185 -0.075 0.297 0.020 0.168 -0.288 -0.218 0.002 1.000 

 

Table 6. Amount of variance in population-related data explained by conditioning versus 

PCA 

Number of variables/components extracted 1 2 3 4 5 6 7 8 9 10 11 

Cumulative % additional variance extracted by 
conditioning - myopic approach 

52.1% 72.2% 79.9% 86.6% 92.2% 94.8% 96.9% 98.8% 99.4% 99.7% 100.0% 

Cumulative % additional variance extracted by 
conditioning - most informative variables 

52.1% 75.7% 84.0% 89.6% 93.1% 95.5% 97.8% 98.9% 99.5% 99.8% 100.0% 

Cumulative % of total variance extracted by PCA 57.0% 79.5% 88.3% 93.9% 96.1% 97.6% 98.7% 99.3% 99.7% 99.9% 100.0% 

 

This last analysis is offered only as an example of applying our technique, but in terms of just 

a few of the original variables representing most of the information the results are impressive.  

Selecting myopically, two out of the original 11 variables contain 72.2% of the information in 

all the data, and the best combination of two variables (log_gdp and literacy) explains 75.7% 

of the total variance, whereas the first two PCs contain 79.5%. With five variables chosen 

myopically the proportion of explained variance is 92.2%, and with the best five variables it is 

93.1%, versus 96.1% with five PCs. 

 

Since, with this population-related data, we know the sample size n = 74 countries, we can 

apply the Bartlett test for significance of the residual partial correlation matrix. We find that 

with conditioning on the best 9 variables (but not less) the residual partial correlation is not 
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significant at the 5% level.  This contradicts simpler heuristic rules such as the scree test, or 

ignoring variables (or PCs) that account for less than 1 unit of variance. 

 

9.   EXTENSIONS 

The procedures described above have been coded to operate in a purely mechanical fashion to 

select the most informative variables. By treating the correlation matrix of the data as the 

starting point, “most informative” is implicitly evaluated on the basis of each variable having 

a variance normalized to 1.  There are two very simple modifications of the mechanical 

process that may be useful when working with specific data: 

 

1. The user selects specific variables of interest and uses the program to calculate the 

proportion of total variance that would be explained by just these selected variables; 

 

2. The user decides that, for the specific study, some variables should be weighted as more 

important than others.  This could be achieved by inputting the relative weighting at the 

beginning of the routine Myopic or PickBest, as data additional to the original correlation 

matrix.  Thus if a study involves three variables, and the user decides that their relative 

importance is in the ratio 3:2:1, the information content selection step will weight the 

variables accordingly. 

 

10. SUMMARY 

We have described a method of multivariate statistics that selects a “most informative” subset 

of variables from a total set of observations where the variables are correlated with one 

another. The method was discovered some time ago, but is not at all well known in the 

operational research community. It is computationally simple to apply with modern software, 

and is much superior to attempting to guess which variables to retain simply by looking at the 

correlation matrix. Sample analyses with two moderately large sets of data (11 and 12 

variables) illustrate that the approach is competitive with PC analysis, and has the obvious 

advantage of selecting fewer than all the original variables, while PC analysis uses all the 

original variables. A statistical test of significance on a data set with 74 cases suggests a 

caveat for both this method and PC analysis on how many variables (or PCs) can be omitted 

with little loss of information if the sample size is reasonably large. 
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