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Abstract

A novel primal-dual path-following interior-point algorithm for the Cartesian P∗(κ)-linear
complementarity problem over symmetric cones is presented. The algorithm is based on a
reformulation of the central path for finding the search directions. For a full Nesterov-Todd
step feasible interior-point algorithm based on the new search directions, the complexity
bound of the algorithm with small-update approach is the best-available bound.

Key words: Linear complementarity problem, full Nesterov-Todd step, small-update method, polyno-
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1 Introduction

Let (J , ◦) be the Cartesian product of a finite number of Euclidean Jordan algebras, i.e.,
J = J1×J2× · · · ×JN , with its cone of squares K = K1×K2× · · · ×KN , where Jj is an

nj-dimensional Euclidean Jordan algebra with n =
∑N

j=1 nj and Kj is the corresponding

cone of squares to Jj with rank(Jj) = rj and r =
∑N

j=1 rj . For a linear transformation
A : J → J and a q ∈ J , the linear complementarity problem over symmetric cones
(SCLCP) is to find x, s ∈ J such that

x ∈ K, s = A(x) + q ∈ K, and 〈x, s〉 = 0,

where 〈x, s〉, denotes the Euclidean inner product.

The SCLCP includes a wide class of problems, namely, linear complementarity problem
(LCP), second-order cone linear complementarity problem (SOCLCP) and semidefinite
linear complementarity problem (SDLCP) as special cases. Moreover, the Karush Kuhn
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Tucker (KKT) condition of symmetric optimization (SCO) can be written in the form
SCLCP [19]. For a comprehensive study on recent developments related to symmetric cone
complementarity problems (SCCP), the reader is referred to [20]. SCLCP is called the
Cartesian P∗(κ)-SCLCP if the linear transformation A has the Cartesian P∗(κ)-property,
i.e.,

(1 + 4κ)
∑

ν∈I+(x)

〈
x(ν), [A(x)](ν)

〉
+

∑
ν∈I−(x)

〈
x(ν), [A(x)](ν)

〉
≥ 0,

where κ is a nonnegative constant, ν ∈ {1, 2, . . . , N}, and

I+(x) = {ν : 〈x(ν), [A(x)](ν)〉 > 0}, I−(x) = {ν : 〈x(ν), [A(x)](ν)〉 < 0}.

It is a straightforward extension of the P∗(κ)-matrix introduced by Kojima et al. [9]. If
K = Rn+, which corresponds to n1 = n2 = . . . = nN = 1 and n = N , the Cartesian P∗(κ)-
SCLCP becomes the P∗(κ)-LCP. Moreover, it is evident that for κ = 0, P∗(0)-SCLCP
is the so-called monotone SCLCP [5]. The linear transformation A has the Cartesian
P∗-property if it has the Cartesian P∗(κ)-property for some nonnegative κ, i.e.

P∗ =
⋃
κ≥0

P∗(κ).

Interior-point methods (IPMs) for solving linear optimization (LO) were initiated by Kar-
markar [8]. It is well known that the IPMs have polynomial complexity and are very
efficient in practice. Among the variant IPMs, the primal-dual path-following methods
are the most efficient from a computational point of view. These methods have used the
so-called central path as a guideline to the optimal set. Kojima et al. [9] first proved
the existence and uniqueness of the central path for the P∗(κ)-LCP and generalized the
primal-dual interior-point algorithm for LO to the P∗(κ)-LCP. By using the techniques of
Euclidean Jordan algebras, Faybusovich [5] first studied the interior-point algorithm for
the monotone SCLCP and proved the existence and uniqueness of the central path. Gowda
and Sznajder [6] presented some global uniqueness and solvability results for SCLCP. Luo
and Xiu [10] first established a theoretical framework of path-following interior-point algo-
rithms for the Cartesian P∗(κ)-SCLCP and proved the global convergence and the iteration
complexities of the proposed algorithms. In addition to Faybusovich’s results [3, 4], Ran-
garajan [11] proposed the first infeasible interior-point method (IIPM) for SCLCP. Yoshise
[18] was the first to analyze IPMs for nonlinear complementarity problems over symmetric
cones. Darvay [1] proposed a full-Newton step primal-dual path-following interior-point al-
gorithm for LO. The search direction of his algorithm is introduced by using an algebraic
equivalent transformation of the nonlinear equations which define the central path and
then applying Newton’s method for the new system of equations. Later on, Wang and Bai
[15, 16] extended Darvay’s algorithm for LO to SDO and symmetric optimization (SCO).
Recently, Zhang and Xu [21] proposed a full-Newton step primal-dual interior-point al-
gorithm for LO. The search directions of their algorithm is obtained by a new algebraic
transformation of the centering equations and then applying Newton’s method for the
new system. In this paper, the Zhang and Xu’s algorithm is generalised to the Cartesian
P∗(κ)-SCLCP. A new method is proposed and analyzed for the Cartesian P∗(κ)-SCLCP.
The algorithm uses the full Newton step in the methods of proximity measure for the first

time. It is proved that this novel algorithm stops after at most O((1 + 2κ)
√
r log rµ0

ε )
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iteration, where ε is the desired accuracy, µ0 is the initial value of the barrier parameter,
and r is the rank of the underlying Euclidean Jordan algebra. The complexity obtained
here coincides with the best known bound, while tendering a simple analysis. It should
be noted that the same algorithm can be introduced using the technique introduced in
Darvay [1].

The remainder of this paper is organized as follows: In §2, after reviewing the properties
of Euclidean Jordan algebra, the linear complementarity problem is generalized. In §3,
the new search directions and new algorithm is presented. The complexity analysis for
the algorithm based on the new search direction is given in §4.

2 Euclidean Jordan algebra

Some important results on Euclidean Jordan algebra and symmetric cones are presented
in this section. For a more comprehensive study, the reader is referred to [2, 5, 14].

A Jordan algebra J is a finite dimensional vector space endowed with a bilinear map
◦ : J × J → J satisfying the following properties for all x, y ∈ J :

• x ◦ y = y ◦ x,

• x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x.

Moreover, a Jordan algebra (J , ◦) is called Euclidean if an associative inner product 〈·, ·〉
is defined, i.e. for all x, y, z ∈ J ,

〈x ◦ y, z〉 = 〈x, y ◦ z〉.

A Jordan algebra has an identity element, if there exists a unique element e ∈ J such
that x ◦ e = e ◦ x = x, for all x ∈ J . The set K = {x2 : x ∈ J } is called the cone of
squares of Euclidean Jordan algebra (J , ◦, 〈·, ·〉). A cone is symmetric if and only if it is
the cone of squares of some Euclidean Jordan algebra. An element c ∈ J is idempotent if
c ◦ c = c. Two elements x and y are orthogonal if x ◦ y = 0. An idempotent c is primitive
if it is nonzero and cannot be expressed by the sum of two other nonzero idempotents. A
set of primitive idempotents {c1, c2, . . . , ck} is called a Jordan frame if ci ◦ cj = 0, for any

i 6= j ∈ {1, 2, . . . , k} and
∑k

i=1 ci = e. For any x ∈ J , let r be the smallest positive integer
such that {e, x, x2, . . . , xr} is linearly dependent; r is called the degree of x and is denoted
by deg(x). The rank of J , denoted by rank(J ), is defined as the maximum of deg(x) over
all x ∈ J . The importance of a Jordan frame comes from the fact that any element of
Euclidean Jordan algebra can be represented using some Jordan frame, as explained more
precisely in the following spectral decomposition theorem.

Theorem 1 (Theorem III.1.2 in [2]) Let (J , ◦, 〈·, ·〉) be an Euclidean Jordan algebra with
rank(J ) = r. Then, for any x ∈ J , there exists a Jordan frame {c1, c2, . . . , cr} and real
numbers λ1(x), λ2(x), . . . , λr(x) such that

x =
r∑
i=1

λi(x)ci.
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The numbers λi(x) (with their multiplicities) are the eigenvalues of x. Furthermore,

Tr(x) =
r∑
i=1

λi(x) and det(x) =
r∏
i=1

λi(x). �

Since “ ◦ ” is bilinear map, for every x ∈ J , there exists a matrix L(x) such that for every
y ∈ J , x ◦ y = L(x)y. In particular, L(x)e = x, L(x)−1e = x−1 and L(x)x = x2. For each
x ∈ J , define

P (x) := 2L(x)2 − L(x2),

where, L(x)2 = L(x)L(x). The map P (x) is called the quadratic representation of J ,
which is an essential concept in the theory of Jordan algebra and plays an important role
in the analysis of interior-point algorithms.

The next lemma contains a result of crucial importance in the design of IPMs within the
framework of Jordan algebras.

Lemma 1 (Lemma 2.2 in [4]) Let x, s ∈ K, then Tr(x ◦ s) ≥ 0 and it follows that
Tr(x ◦ s) = 0 if and only if x ◦ s = 0. �

For any x, y ∈ J , x and y are said to be operator commutable if L(x) and L(y) commute,
i.e., L(x)L(y) = L(y)L(x). In other words, x and y are operator commutable if for all
z ∈ J , x ◦ (y ◦ z) = y ◦ (x ◦ z) (see, for example, Schmieta & Alizadeh [12]).

Theorem 2 (Lemma X.2.2 in [2]) The elements x and y, with x, y ∈ J , are operator
commutable if and only if they share a Jordan frame, that is

x =

r∑
i=1

λi(x)ci and y =

r∑
i=1

λi(y)ci,

for Jordan frame {c1, c2, . . . , cr}. �

For any x, y ∈ J , define the canonical inner product of x, y ∈ J as

〈x, y〉 = Tr(x ◦ y),

and the Frobenius norm of x as
‖x‖F =

√
〈x, x〉.

From these definitions it follows that

‖x‖F =
√

Tr(x2) =

√√√√ r∑
i=1

λ2
i (x).

Moreover, λmin(x) ≤ ‖x‖F , λmax(x) ≤ ‖x‖F and |〈x, y〉| ≤ ‖x‖F ‖y‖F . The following
lemma shows the existence and uniqueness of a scaling point w corresponding to any
points x, s ∈ intK such that P (w) takes s into x, where intK denotes the interior of K.
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Lemma 2 (Lemma 3.2 in[3]) Let x, s ∈ intK. Then, there exists a unique w ∈ intK such
that x = P (w)s. Moreover,

w = P (x
1
2 )
(
P (x

1
2 )s
)− 1

2
[

= P (s−
1
2 )
(
P (s

1
2 )x
) 1

2
]
. �

The point w is called the Nesterov-Todd (NT)-scaling point of x and s. Two elements
x and y, with x, y ∈ J , are similar, as denoted by x ∼ y, if and only if x and y share
the same set of eigenvalues. Let x ∈ K if and only if λi ≥ 0 and x ∈ intK if and only if
λi > 0, for all i = 1, 2, . . . , r. Furthermore, x is positive semidefinite (positive definite) if
x ∈ K (x ∈ intK). Since Tr(·) is associative, i.e., Tr(x ◦ (y ◦ z)) = Tr((x ◦ y) ◦ z), it follows
that

〈L(x)y, z〉 = Tr((x ◦ y) ◦ z) = Tr((y ◦ x) ◦ z) = Tr(y ◦ (x ◦ z)) = 〈y, L(x)z〉,

showing that L(x) is a self-adjoint operator. As the definition of P (x) depends only on
L(x) and L(x2), both of which are self-adjoint, P (x) is also self-adjoint.

Some results which are needed for the analysis of the algorithm are listed below.

Lemma 3 (Proposition 21 in [12]) Let x, s, u ∈ intK, then

(i) P (x
1
2 )s ∼ P (s

1
2 )x.

(ii) P
(

(P (u)x)
1
2

)
P (u−1)s ∼ P (x

1
2 )s. �

Lemma 4 (Proposition 3.2.4 in [14]) Let x, s ∈ intK, and w be the scaling point of x and
s, then (

P (x
1
2 )s
) 1

2 ∼ P (w
1
2 )s. �

Lemma 5 (Lemma 30 in [12]) Let x, s ∈ intK, then

‖P (x)
1
2 s− e‖F ≤ ‖x ◦ s− e‖F . �

Lemma 6 (Theorem 4 in [13]) Let x, s ∈ intK, then

λmin(P (x)
1
2 s) ≥ λmin(x ◦ s). �

Lemma 7 (Lemmas 2.12 and 2.16 in [7]) Let x, s ∈ J , then
(i) ‖x2‖F ≤ ‖x‖2F .
(ii) ‖x ◦ s‖F ≤ 1

2‖x
2 + s2‖F . �

Let 0 ≤ α ≤ 1, then define x(α) := x+ α∆x and s(α) := s+ α∆s. The next lemma gives
a condition for a feasible step-length ᾱ > 0 such that x(ᾱ) ∈ intK and s(ᾱ) ∈ intK.

Lemma 8 (Lemma 4.1 in [15]) Let x, s ∈ intK and x(α)◦s(α) ∈ intK for α ∈ [0, ᾱ], then
x(ᾱ) ∈ intK and s(ᾱ) ∈ intK. �
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2.1 The general case

In this section the definitions and properties stated so far are generalised to the case where
the cone underlying the given P∗(κ)-SCLCP is the Cartesian product ofN symmetric cones
Kj , where N > 1. Partition any vector x ∈ J according to the dimensions of the successive
cones Kj , such that

x = (x(1), x(2), . . . , x(N)) ∈ J ⇔ x(j) ∈ Jj , 1 ≤ j ≤ N (1)

and

x = (x(1), x(2), . . . , x(N)) ∈ K ⇔ x(j) ∈ Kj , 1 ≤ j ≤ N. (2)

The algebra (J , �) is defined as a direct product of Jordan algebras Jj , j = 1, 2, . . . , N ,
with the product defined as follows

x � s = (x(1) ◦ s(1), x(2) ◦ s(2), . . . , x(N) ◦ s(N)). (3)

Obviously, if e(j) ∈ Jj is the identity element in the Jordan algebra for the jth cone, then
the vector

e = (e(1), e(2), . . . , e(N)), (4)

is the identity element in (J , �). It can easily be verified that Tr(e) = r. The matrix L(x)
and the quadratic representation of J can be adjusted to

L(x) = diag
(
L(x(1)), L(x(2)), . . . , L(x(N))

)
, (5)

and

P (x) = diag
(
P (x(1)), P (x(2)), . . . , P (x(N))

)
. (6)

Let x(j) =
∑rj

i=1 λi(x
(j))c

(j)
i be the spectral decomposition of x(j) ∈ Jj , 1 ≤ j ≤ N . It

follows from Theorem 1 that the spectral decomposition of x ∈ J can be adapted to

x =
( r1∑
i=1

λi(x
(1))c

(1)
i ,

r2∑
i=1

λi(x
(2))c

(2)
i , . . . ,

rN∑
i=1

λi(x
(N))c

(N)
i

)
. (7)

Let {c(1)
1 , . . . , c

(1)
r1 , . . . , c

(N)
1 , . . . , c

(N)
rN } be the Jordan frame of x ∈ J . The canonical inner

product can be adjusted to

〈x, s〉 =
N∑
j=1

〈x(j), s(j)〉.

Furthermore,

‖x‖F =

√√√√ N∑
j=1

‖x(j)‖2F and det(x) =
N∏
j=1

det(x(j)).
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Let x(j), s(j) ∈ intKj and w(j) ∈ intKj be the NT-scaling point of x(j) and s(j), i.e.,
P (w(j))s(j) = x(j), for each j, 1 ≤ j ≤ N . The scaling point of x and s in K is then defined
by

w = (w(1), w(2), . . . , w(N)). (8)

Since P (w(j)) is symmetric and positive definite, for each j, 1 ≤ j ≤ N , the matrix

P (w) = diag
(
P (w(1)), P (w(2)), . . . , P (w(N))

)
, (9)

is symmetric and positive definite as well and represents an automorphism of K such that

P (w)s =
(
P (w(1))s(1), P (w(2))s(2), . . . , P (w(N))s(N)

)
= (x(1), x(2), . . . , x(N)) = x.

Therefore, P (w) can be used to re-scale x and s to the same vector

v = (v(1), v(2), . . . , v(N)). (10)

Finally, define

λmin(v) = min{λmin(v(j)) : 1 ≤ j ≤ N}

and

λmax(v) = max{λmax(v(j)) : 1 ≤ j ≤ N}.

The concept of the central path can also be extended to the Cartesian P∗(κ)-SCLCP.
The existence and uniqueness of the central path for the Cartesian P∗(κ)-SCLCP were
discussed by Luo and Xiu [10]. In developing the results it is assumed that the Cartesian
P∗(κ)-SCLCP satisfies the interior-point condition (IPC), i.e., there exists x0, s0 ∈ intK
such that s0 = A(x0) + q [10].

The basic idea of interior-point methods (IPMs) is to replace the complementarity condi-
tion x � s = 0, for the Cartesian P∗(κ)-SCLCP, by the parameterized equation x � s = µe,
with µ > 0. Thus, one may consider

s = A(x) + q, x, s ∈ intK, (11)

x � s = µe. (12)

For each µ > 0, the system (11)–(12) has a unique solution (x(µ), s(µ)) (under given
assumptions), and (x(µ), s(µ)) is called the µ-center of the Cartesian P∗(κ)-SCLCP. The
set of µ-centers (with µ running through all positive real numbers) gives a homotopy path,
which is called the central path of the Cartesian P∗(κ)-SCLCP. If µ→ 0, then the limit of
the central path exists, and since the limit points satisfy the complementarity condition
x � s = 0, the limit yields an optimal solution of the Cartesian P∗(κ)-SCLCP.
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3 A new search directions and algorithm

The natural way to define a search direction is to follow the Newton approach and to
linearize equation (12). This leads to the following system:

A(∆x)−∆s = 0 (13)

x �∆s+ s �∆x = µe− x � s. (14)

Due to the fact that L(x)L(s) 6= L(s)L(x) in general, the system (13)–(14) does not
always have a unique solution. It is known that this difficulty can be resolved by applying
a scaling scheme. This is given in the following lemma.

Lemma 9 (Lemma 28 in [12]) Let u ∈ intK. Then

x ◦ s = µe⇔ P (u)x ◦ P (u)−1s = µe. �

Replacing equation (12) by P (u)x � P (u−1)s = µe, and applying the Newton method, it
is obtained that

A(∆x)−∆s = 0, (15)

P (u)∆x � P (u)−1s+ P (u)x � P (u)−1∆s = µe− P (u)x � P (u)−1s. (16)

The scaling point u = w−
1
2 is the focus, where w is the NT-scaling point of x and s as

defined in Lemma 2. Define v as

v :=
P (w)−

1
2x

√
µ

[
=
P (w)

1
2 s

√
µ

]
. (17)

Note that x � s = µe if and only if v = e (Proposition 5.7.2 in [14]). Therefore, it is
obtained that

v = e⇔ µv = µe.

Combining the relation above with the system (15)–(16), it follows that

A(∆x)−∆s = 0, (18)

P (u)∆x � P (u)−1s+ P (u)x � P (u)−1∆s = µv − P (u)x � P (u)−1s. (19)

Denote

A := P (w)
1
2AP (w)

1
2 , dx :=

P (w)−
1
2 ∆x

√
µ

, and ds :=
P (w)

1
2 ∆s

√
µ

. (20)

Note that the linear transformation A has the Cartesian P∗(κ)-property if the linear
transformation A has the Cartesian P∗(κ)-property (Proposition 3.4 in [10]). Using (20),
the system (18)–(19) turns to

A(dx)− ds = 0, (21)

dx + ds = e− v. (22)
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An important ingredient of this paper is that the analysis is different from the previous
works, which is key to proving the polynomial complexity of the new algorithm. For this
purpose, the search directions dx and ds are obtained by solving system (21)–(22), so ∆x
and ∆s can be computed via (20). The new iterate is obtained by taking a full NT-step
as

x+ = x+ ∆x, s+ = s+ ∆s. (23)

For more analysis of the algorithm, define a norm-based proximity measure σ(x, s;µ) as
follows:

σ(x, s;µ) := σ(v) := ‖e− v‖F . (24)

It is assumed that a pair (x0, s0) with x0 ∈ intK and s0 ∈ intK is given that is close to
(x(µ), s(µ)) for some µ = µ0 in the sense of the proximity measure σ(x0, s0;µ0). The steps
of the algorithm are summarized as Algorithm 1.

Algorithm 1: A novel algorithm for the Cartesian P∗(κ) — SCLCP

Input : Accuracy parameter ε > 0, barrier update parameter 0 < θ < 1, threshold parameter
0 < τ < 1 and a feasible solution x0, s0 and µ0 > 0 such that σ(x0, s0;µ0) ≤ τ

1 x← x0, s← s0, µ← µ0;
2 while 〈x, s〉 ≥ ε do
3 solve system (21)–(22) and via (20) to obtain (∆x,∆s);
4 x+ ← x+ ∆x;
5 s+ ← s+ ∆s;
6 µ← (1− θ)µ;

4 Analysis

In this section, the effects of a full NT-step and a µ-update for the quantity of the proximity
measure are described. A proof that the algorithm is well defined is also supplied. It is
also proven that the Cartesian P∗(κ)-SCLCP problem can be solved by this algorithm in
polynomial-time.

4.1 Some basic results

Before dealing with the analysis of the algorithm, two needed lemmas are required. Since
the linear transformation A has the Cartesian P∗(κ)-property, it is obtained that

(1 + 4κ)
∑

j∈J+(∆x)

〈
∆x(j), [A(∆x)](j)

〉
+

∑
j∈J−(∆x)

〈
∆x(j), [A(∆x)](j)

〉
≥ 0, (25)

where

J+(∆x) = {j : 〈∆x(j), [A(∆x)](j)〉 > 0}, J−(∆x) = {j : 〈∆x(j), [A(∆x)](j)〉 < 0}.
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It follows from (20) that

〈dx, ds〉 =
〈∆x,∆s〉

µ
.

Thus, equation (25) can be rewritten as

(1 + 4κ)
∑
j∈J+

〈d(j)
x , d(j)

s 〉+
∑
j∈J−

〈d(j)
x , d(j)

s 〉 ≥ 0, (26)

where J+ = {j : 〈∆x(j),∆s(j)〉 > 0, 1 ≤ j ≤ N} and J− = {j : 〈∆x(j),∆s(j)〉 < 0, 1 ≤
j ≤ N}.

Lemma 10 The Frobenius norm of product of the search directions will always be less
than or equal to 1+2κ

2 times of square of the proximity measure σ(v), i.e.,

‖dx � ds‖F ≤
1 + 2κ

2
σ(v)2.

Proof: It is known that

1

4

∑
j∈J+

‖d(j)
x + d(j)

s ‖2F −
∑
j∈J+

〈d(j)
x , d(j)

s 〉 =
1

4

∑
j∈J+

‖d(j)
x − d(j)

s ‖2F ≥ 0.

This implies, by equations (21)–(22) and (24), that

∑
j∈J+

〈d(j)
x , d(j)

s 〉 ≤
1

4

∑
j∈J+

‖d(j)
x + d(j)

s ‖2F ≤
1

4

∑
j∈J
‖d(j)

x + d(j)
s ‖2F =

1

4
‖dx + ds‖2F =

1

4
σ(v)2.

It follows immediately from (26) and the above relation that

−
∑
j∈J−

〈d(j)
x , d(j)

s 〉 ≤ (1 + 4κ)
∑
j∈J+

〈d(j)
x , d(j)

s 〉 ≤
1 + 4κ

4
σ(v)2.

On the other hand

σ(v)2 = ‖dx + ds‖2F = ‖dx‖2F + ‖ds‖2F + 2
( ∑
j∈J+

〈d(j)
x , d(j)

s 〉+
∑
j∈J−

〈d(j)
x , d(j)

s 〉
)

≥ ‖dx‖2F + ‖ds‖2F − 8κ
∑
j∈J+

〈d(j)
x , d(j)

s 〉

≥ ‖dx‖2F + ‖ds‖2F − 2κσ(v)2.

From this, it can be deduced that

‖dx‖2F + ‖ds‖2F ≤ (1 + 2κ)σ(v)2.
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Therefore, by using
∑n

i=1 a
2
i ≤

(∑n
i=1 ai

)2
for all ai ≥ 0, Lemma 7 and the triangle

inequality it is obtained that

‖dx � ds‖2F =
N∑
j=1

‖d(j)
x ◦ d(j)

s ‖2F ≤
( N∑
j=1

‖d(j)
x ◦ d(j)

s ‖F
)2

≤
( N∑
j=1

‖d(j)
x ‖2F + ‖d(j)

s ‖2F
2

)2

=
(‖dx‖2F + ‖ds‖2F

2

)2

≤
((1 + 2κ)σ(v)2

2

)2
.

This completes the proof. �

The next lemma gives a fundamental property about the proximity measure σ(v).

Lemma 11 The eigenvalues of vectors v(j) for j = 1, 2, . . . , N will always be between
1− σ(v) and 1 + σ(v), i.e.,

1− σ(v) ≤ λi(v(j)) ≤ 1 + σ(v), i = 1, 2, . . . , rj , j = 1, 2, . . . , N.

Proof: By the definition of σ(v) (cf. (24)), it follows that

σ(v)2 = ‖e− v‖2F =

N∑
j=1

‖e(j) − v(j)‖2F

=
N∑
j=1

Tr
(

(e(j) − v(j))2
)

=

N∑
j=1

rj∑
i=1

(
1− λi(v(j))

)2
.

The above expression implies that

|1− λi(v(j))| ≤ σ(v), i = 1, 2, . . . , rj , j = 1, 2, . . . , N,

which completes the proof. �

4.2 Properties of the full-NT step

Using equations (20) and (23), for each 1 ≤ j ≤ N , it is obtained that

x
(j)
+ = x(j) + ∆x(j) =

√
µP (w(j))

1
2 (v(j) + d

(j)
x ),

s
(j)
+ = s(j) + ∆s(j) =

√
µP (w(j))−

1
2 (v(j) + d

(j)
s ).

(27)
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By using the second equation of (24), it follows that

(v(j) + d(j)
x ) ◦ (v(j) + d(j)

s ) = (v(j))2 + v(j) ◦ (d(j)
x + d(j)

s ) + d(j)
x ◦ d(j)

s

= v(j) + d(j)
x ◦ d(j)

s , j = 1, 2, . . . , N. (28)

Since P (w)
1
2 and P (w)−

1
2 are automorphisms of intK (Theorem III.2.1 in [2]), x+ and s+

belong to intK if and only if v + dx and v + ds belong to intK. The main aim of this
subsection is to find conditions for strict feasibility of the full-NT step.

Lemma 12 The full-NT step is strictly feasible if v + dx � ds ∈ intK.

Proof: Introduce a step length α with α ∈ [0, 1] and for each j = 1, 2, . . . , N , define

(v(j))αx = v(j) + αd(j)
x , (v(j))αs = v(j) + αd(j)

s .

It thus follows that (v(j))0
x = v(j), (v(j))0

s = v(j), (v(j))1
x = v(j)+d

(j)
x and (v(j))1

s = v(j)+d
(j)
s .

From equation (28), it follows that

(v(j))αx ◦ (v(j))αs = (v(j) + αd(j)
x ) ◦ (v(j) + αd(j)

s )

= (v(j))2 + αv(j) ◦ (d(j)
x + d(j)

s ) + α2d(j)
x ◦ d(j)

s

= (1− α)(v(j))2 + αv(j) + α2d(j)
x ◦ d(j)

s . (29)

If v + dx � ds ∈ intK, then, for j = 1, 2, . . . , N , v(j) + d
(j)
x ◦ d(j)

s ∈ intKj (cf. (2)) and it

follows that d
(j)
x ◦ d(j)

s �Kj − v(j). Substituting this into equation (29), the result is

(v(j))αx ◦ (v(j))αs�Kj (1− α)(v(j))2 + αv(j) − α2v(j) = (1− α)v(j)(α+ v(j)).

If 0 ≤ α ≤ 1, then (v(j))αx ◦ (v(j))αs�Kj0
(
(v(j))αx ◦ (v(j))αs ∈ intKj

)
, for j = 1, 2, . . . , N .

From Lemma 8, it follows that (v(j))1
x = v(j)+d

(j)
x ∈ intKj and (v(j))1

s = v(j)+d
(j)
s ∈ intKj ,

for each j = 1, 2, . . . , N. Hence, the result of the lemma holds. �

Corollary 1 The new iterates (x+, s+) are strictly feasible if

‖dx � ds‖F < λmin(v).

Proof: For i = 1, 2, . . . , rj , j = 1, 2, . . . , N , it follows that

λi(v
(j) + d

(j)
x ◦ d(j)

s ) ≥ λmin(v(j) + d
(j)
x ◦ d(j)

s ) ≥ λmin(v(j))− ‖d(j)
x ◦ d(j)

s ‖F ,

where the second inequality is followed by Lemma 14 in [12]. By Lemma 12, x+ and s+ are

strictly feasible if v+ dx � ds ∈ intK, i.e., for each j = 1, 2, . . . , N, v(j) + d
(j)
x ◦ d(j)

s ∈ intKj .
This holds if λmin(v(j)) > ‖d(j)

x ◦ d(j)
s ‖F . This last relation certainly holds if λmin(v) >

‖dx � ds‖F , because for each j = 1, 2, . . . , N , it follows that

λmin(v(j)) ≥ λmin(v) > ‖dx � ds‖F ≥ ‖d(j)
x ◦ d(j)

s ‖F .

Therefore, the proof is complete. �
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Lemma 13 Let σ(v) be defined as (24), and (x, s) ∈ intK × intK. If σ(v) < 2
1+
√

3+4κ
,

then the full-NT step for the Cartesian P∗(κ)-SCLCP is strictly feasible, i.e., (x+, s+) ∈
intK × intK.

Proof: By Lemma 10, it follows that

‖dx � ds‖F ≤
1 + 2κ

2
σ(v)2. (30)

By Corollary 1, the full-NT step is strictly feasible if ‖dx � ds‖F < λmin(v). This last
inequality certainly holds, by Lemma 11 and (30), if

1 + 2κ

2
σ(v)2 < 1− σ(v),

which leads to σ(v) < 2
1+
√

3+4κ
. This completes the proof. �

The next lemma gives the effect of full-NT step duality gap.

Lemma 14 If σ(v) < 2
1+
√

3+4κ
, then

〈x+, s+〉 < 2µr

(
3 +
√

3 + 4κ

1 +
√

3 + 4κ

)
.

Proof: Due to (27), it can be written that

〈x(j)
+ , s

(j)
+ 〉 = 〈√µP (w(j))

1
2 (v(j)+d(j)

x ),
√
µP (w(j))−

1
2 (v(j)+d(j)

s )〉 = µ〈v(j)+d(j)
x , v(j)+d(j)

s 〉.

Using equation (22), it is obtained that

〈v(j) + d(j)
x , v(j) + d(j)

s 〉 = 〈v(j), v(j)〉+ 〈v(j), d(j)
x + d(j)

s 〉+ 〈d(j)
x , d(j)

s 〉
= 〈v(j), v(j)〉+ 〈v(j), e(j) − v(j)〉+ 〈d(j)

x , d(j)
s 〉

= Tr(v(j)) + Tr(d(j)
x ◦ d(j)

s ), j = 1, 2, . . . , N.

On the other hand, by the Cauchy-Schwartz inequality, Lemma 11 and the proof of Corol-
lary 1, it follows that

〈d(j)
x , d(j)

s 〉 = Tr(d(j)
x ◦ d(j)

s ) =

rj∑
i=1

λi(d
(j)
x ◦ d(j)

s )

≤ ‖e(j)‖‖λ(d(j)
x ◦ d(j)

s )‖ =
√
rj‖d(j)

x ◦ d(j)
s ‖F

< rjλmin(v(j)) ≤ rj(1 + σ(v)).

Thus, by the relations above and Lemma 11, it is obtained that

〈x(j)
+ , s

(j)
+ 〉 < µ

( rj∑
i=1

λi(v
(j)) + rj(1 + σ(v))

)
≤ 2µrj(1 + σ(v))

< 2µrj

(
1 +

2

1 +
√

3 + 4κ

)
.
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Therefore,

〈x+, s+〉 =
N∑
j=1

〈x(j)
+ , s

(j)
+ 〉 < 2µr

(
3 +
√

3 + 4κ

1 +
√

3 + 4κ

)
.

This completes the proof. �

Define

v
(j)
+ :=

P (w
(j)
+ )−

1
2x

(j)
+√

µ

[
=
P (w

(j)
+ )

1
2 s

(j)
+√

µ

]
, j = 1, 2, . . . , N, (31)

where, w
(j)
+ is the scaling point of x

(j)
+ and s

(j)
+ . Using Lemma 4, (27) and the second part

of Lemma 3 respectively, it follows that

(v
(j)
+ )2 =

(
P (w

(j)
+ )

1
2 s

(j)
+√

µ

)2

∼ P (x
(j)
+ )

1
2 s

(j)
+

µ

=
µ

(
P
(
P (w(j))

1
2 (v(j)+d

(j)
x )
) 1

2
P (w(j))−

1
2 (v(j)+d

(j)
s )

)
µ

∼ P (v(j) + d
(j)
x )

1
2 (v(j) + d

(j)
s ), j = 1, 2, . . . , N.

(32)

Lemma 15 The minimal eigenvalue of vector v+ will always be greater than or equal to
the square root of 1− σ(v)− 1+2κ

2 σ(v)2.

Proof: By using (32), Lemma 6, (28), Lemma 11 and Lemma 10, for j = 1, 2, . . . , N , it
can be deduced that

λmin

(
(v

(j)
+ )2

)
= λmin

(
P (v(j) + d

(j)
x )

1
2 (v(j) + d

(j)
s

)
≥ λmin

(
(v(j) + d

(j)
x ) ◦ (v(j) + d

(j)
s )
)

= λmin

(
v(j) + d

(j)
x ◦ d(j)

s

)
≥ λmin(v(j))− ‖d(j)

x ◦ d(j)
s ‖F

≥ 1− σ(v)− ‖d(j)
x ◦ d(j)

s ‖F

≥ 1− σ(v)− ‖dx � ds‖F

≥ 1− σ(v)− 1+2κ
2 σ(v)2,

where the second inequality follows by Lemma 14 in [12]. Since for each j = 1, 2, . . . , N ,
the above inequality is true, so

λmin(v+) ≥
√

1− σ(v)− 1 + 2κ

2
σ(v)2.

This completes the proof. �
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The following theorem describes the effect of a µ-update and of a full-NT step on the
proximity measure.

Theorem 3 Let σ(v) < 2
1+
√

3+4κ
and µ+ = (1− θ)µ, then

σ(x+, s+;µ+) ≤
θ
√
r + σ(v) + 1+2κ

2 σ(v)2

1− θ +
√

(1− θ)(1− σ(v)− 1+2κ
2 σ(v)2)

.

Proof: Using equations (24), (31), (32), Lemma 5 and equation (28), it follows that

σ(x+, s+;µ+)2 =
∥∥∥e− P (w+)

1
2 s+√

µ+

∥∥∥2

F
=

N∑
j=1

∥∥∥e(j) −
P (w

(j)
+ )

1
2 s

(j)
+√

µ+

∥∥∥2

F

=

N∑
j=1

∥∥∥e(j) −
v

(j)
+√

1− θ

∥∥∥2

F
=

N∑
j=1

∥∥(e(j) −
v

(j)
+√

1− θ
) ◦ e(j)

∥∥2

F

=
N∑
j=1

∥∥(e(j) − (
v

(j)
+√

1− θ
)2) ◦ (e(j) +

v
(j)
+√

1− θ
)−1
∥∥2

F

≤ 1(
1 + λmin( v+√

1−θ )
)2

N∑
j=1

∥∥(e(j) − (
v

(j)
+√

1− θ
)2)
∥∥2

F

=
1(

1 + λmin( v+√
1−θ )

)2

N∑
j=1

∥∥e(j) − P (v(j) + d
(j)
x )

1
2 (v(j) + d

(j)
s )

1− θ
∥∥2

F

≤ 1(
1 + λmin( v+√

1−θ )
)2

N∑
j=1

∥∥e(j) − (v(j) + d
(j)
x ) ◦ (v(j) + d

(j)
s )

1− θ
∥∥2

F

=
1(

1 + λmin( v+√
1−θ )

)2

N∑
j=1

∥∥e(j) − v(j) + d
(j)
x ◦ d(j)

s

1− θ
∥∥2

F

=
1

1− θ
1(√

1− θ + λmin(v+)
)2

N∑
j=1

∥∥(1− θ)e(j) − v(j) − d(j)
x ◦ d(j)

s

∥∥2

F

=
1

1− θ
1(√

1− θ + λmin(v+)
)2

∥∥(1− θ)e− v − dx � ds
∥∥2

F
.

Therefore, it can be deduced that

σ(x+, s+;µ+) ≤ 1√
1− θ

1√
1− θ + λmin(v+)

∥∥(1− θ)e− v − dx � ds
∥∥
F

≤ 1√
1− θ

σ(v) + θ
√
r + 1+2κ

2 σ(v)2

√
1− θ +

√
1− σ(v)− 1+2κ

2 σ(v)2
,
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where, the last inequality follows from Lemma 15, the triangle inequality, (24) and Lemma 10.
This completes the proof. �

4.3 The choice of τ and θ

In this section a threshold τ and an update parameter θ are determined, so that at the
start of the iteration, σ(x, s;µ) ≤ τ . After the full-NT step and a µ-update, the property
σ(x+, s+;µ+) ≤ τ should be maintained. In this case, by Theorem 3, it suffices to have

θ
√
r + σ(v) + 1+2κ

2 σ(v)2

1− θ +
√

(1− θ)(1− σ(v)− 1+2κ
2 σ(v)2)

≤ τ.

The left-hand side of the above inequality is monotonically increasing with respect to σ(v),
which implies that

θ
√
r + σ(v) + 1+2κ

2 σ(v)2

1− θ +
√

(1− θ)(1− σ(v)− 1+2κ
2 σ(v)2)

≤
θ
√
r + τ + 1+2κ

2 τ2

1− θ +
√

(1− θ)(1− τ − 1+2κ
2 τ2)

.

Thus, σ(x+, s+;µ+) ≤ τ is satisfied if

θ
√
r + τ + 1+2κ

2 τ2

1− θ +
√

(1− θ)(1− τ − 1+2κ
2 τ2)

≤ τ. (33)

At this stage, if τ = 1
1+
√

3+4κ
and θ = 1

3
√

6(1+2κ)
√
r
, the inequality (33) certainly holds.

This means that x, s ∈ intK and σ(x, s;µ) ≤ τ are maintained during the algorithm. Thus,
the algorithm is well-defined.

4.4 Complexity bound

Lemma 16 If the barrier parameter µ has the initial value µ0 and is repeatedly multiplied
by 1− θ, with 0 < θ < 1, then after at most⌈1

θ
log

4rµ0

ε

⌉
iterations, 〈x, s〉 ≤ ε.

Proof: According to Lemma 14, after k iterations, the duality gap satisfies

〈xk, sk〉 ≤ 2r
(3 +

√
3 + 4κ

1 +
√

3 + 4κ

)
(1− θ)kµ0

≤ 4r(1− θ)kµ0.

Then, the inequality 〈xk, sk〉 ≤ ε holds if

4r(1− θ)kµ0 ≤ ε.
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Taking logarithms on both sides, it follows that

k log(1− θ) + log
(
4rµ0

)
≤ log ε,

and using log(1− θ) ≤ −θ, 0 < θ < 1, it is observed that the above inequality holds if

−kθ + log
(
4rµ0

)
≤ log ε.

This gives

k ≥ 1

θ
log

4rµ0

ε
,

which completes the proof. �

Theorem 4 Let θ = 1
3
√

6(1+2κ)
√
r

and τ = 1
1+
√

3+4κ
, then the algorithm requires at most

O((1 + 2κ)
√
r log

rµ0

ε
)

iterations. The output is a primal-dual pair (x, s) satisfying 〈x, s〉 ≤ ε.

Proof: Let θ = 1
3
√

6(1+2κ)
√
r
, by using Lemma 16, the proof is straightforward. �

5 Conclusion

A novel path-following interior-point algorithm is proposed for the Cartesian P∗(κ)-SCLCP
and analyzed a full Nesterov-Todd step IPM based on the modified Nesterov-Todd direc-

tion. The complexity bound of the new algorithm, namely, O((1 + 2κ)
√
r log rµ0

ε ) was
obtained. An interesting topic for further research may be the development of full modi-
fied Nesterov-Todd step into an infeasible case.
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